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1 Principles of Forecasting

Suppose we want to know the value of yr,; based on a sample of size T (i.e., y1 = Yi,y2 = Yo, ..., yr = Y7).
Let xr = {y1,92,...,yr} and let Y T denote a forecast of yr.; based on x7. To evaluate the usefulness of this

forecast, we need to specify a loss function (the mean squared error, MSE) and
m(;n MSE(y}H|T) = E(yry1 — y;’+1|T)27
= Yriyr = E(yrilxr),

i.e., the forecast with the smallest mean squared error turns out to be the expectation of yr,; conditional on x7.

Proof: See table 1.

The representation with general notations
Suppose we want to forecast Y;,1 based on its T most recent values, i.e., (¢,Y;, Vi 1,..., Y 711) = x4,

m(gn MSE(yj;Ht) = E(yi41 — yt*—i-1|t)2’
= yf+1|t = E(yt+1|xt)'

1) Recall forecasts of AR(1) without an initial condition

p=dpatea=y dai ¢ <l
i=0



Y1 = QY + €11,
move fowward | Y42 = OYr1 + €rvo = O(OYr + €141) + €112 = O*Yp + Per1 + €140,
_—> .

Yirh = OYirh—1 + €tth;

Ky, =0,

unconditional expectation

conditional expectation

Eiyr = oys—1,
Eiyir1 = E(oye) + Everr = 0By + 0 = oy,
Ewiro = Be(oys1) = 0Byer1 = d(oy) = ¢°ur,

1 step ahead forecast,

2 steps ahead forecasts

h steps ahead forecasts

Eyirn = Et(¢yt+h—1) = ¢]Etyt+h—1 = Cbhyt;

vargyir = Ee[(ye1 — Etyt+l)2] = Ei[(ye+1 — ¢yt)2] = 0627
forecast error variances varilyiyo = Et[(ytJrQ - ¢2yt)2] = Et[(¢€t+1 =+ €t+2)2] = (1 + ¢2)U€27

varyen = Bel(an — ")l = (1 + ¢* + ¢* + - 4+ ¢* V)02,
2) Consider forecasts of AR(1) with an initial condition

t—1

Yo = QY1 + € = ¢lyo + Zqﬁiet,i, 6| < 1, yo given.
i=0

Yir1 = QY + €41,
move fowward | Y42 = QY1 + €rro = G(OYr + €141) + €110 = O*Yp + PEr1 + €rp,
> .

Yirh = QYtrh—1 + €ttn;
Eiyir1 = E(oyr) + Everrr = ¢Ew, + 0 = oy,
Etyiq2 = Et(¢yt+1) = PEyys 1 = ¢(¢?Jt) = ¢21Ut;

1 step ahead forecast,

2 steps ahead forecasts

h steps ahead forecasts

> Eyirn = Ee(@yipn—1) = OEyrin1 = ¢hyt-
Q1: What’s differences about forecasts with and without an initial condition?
E, & E[-|x;]
Q2: What’s differences about forecasts between conditional expectations and projections?

nonlinear vs. linear



2 Linear Projection vs. Conditional Expectation

1
Yt
y§+1|t =c+ Q1Y + QoY1+ Oy = [C O g v ¢T} Y1 | = @'xp =Py |1, x0)= By |x)).

_yt—T-H_

posit the forecase error L x;
<~

0" = E[(yrr1 — Eyes1)x)] E[(y11 — ¢'x;)x}] = 0" < linear projection of y;11 on x;.

The linear projection turns out to produce the smallest mean squared error among the class of linear forecasting
rules.

Table 1: Proof

Linear Projection Conditional Expectation
Let a’x; is any arbitrary linear forecasting rule Let y;,,; = f(x¢) is any function other than conditional expectation
MSE = E(yi1 — a'x;)” MSE = E[y,11 — f(x:)]”
= E(yi1—@'x + d'x; — a’xt)2 = E[yt11 — Eeyeyr + Eeyen — f(Xt)]2
= E(yer1 — ¢'%0)” + 2E[(yes1 — ¢'x0)(@'x¢ — a'%e)] = E(rs1 — Eeyen)” + 2E[(yer1 — Begierr) (Beyen — f(x1))]
+E(¢p'x; — a'x;)? +E[Ewyi 1 — f(x0)]?
= E(y11 — ¢'%0)* + 2E[(yer1 — d'x)x (@ —a)] = E(yer1 — Beyes1)” + 2E[(er1 — Beyerr) (Begern — f ()]
0 0 (ct. Hamilton, 1994, p.73)
+E(¢p'x; — a'x;)? FE[Eyi1 — f(x0)]?

= E(ye+1 — a’xt)2 = E(yi41 — ¢/Xt)2 + E(¢'x; — a’xt)2:> E[yt-H - f(Xt)]2 = E(yi41 — Etyt+1)2 + E[Etyt+1 - f(Xt)]2
min MS min MS
e E(?Jt+1 - a'Xt)z = E(yt+1 - ¢/Xt)2 e E[ytH - f(Xt)]Z = E(yt+1 - Etyt+1)2

= P(yes1]xt) = Grpaje = P'%
MSE[P(y;11]x¢)]= min MSE > MSE[E(y;41|x¢)]= min MSE

~
The conditional expectation offers the best possible forecast.

3 Linear Projection vs. OLS Regression

key words: ¢ and observations.

LP

The coefficient for a linear projection (LP) of ;41 on x; is the value of ¢ that
0" = E[(yr11 — ¢'xi)x}],
= E(yi1x;) = ¢'E(xx}) assume E(x;x}) is nonsingular
= ¢ = E(y;11%)[E(x:x})]™"  when E(x,;x}) is singular, see Hamilton, p.75, footnote2.

The MSE/forecast error associated with a linear projection given a sample of T observations on x; is given by:

E<yt+1 - ({b/Xt)z = EZ/tZH - 2E(¢,Xtyt+l) + E(¢/thi¢)
= Ey7) — 20" E(xeyeq1) + ¢'E(xex;) b
= Byi1 — 2E(y1%) [E(xx)] T E(Xiyer1) + By x) {[E(xixq)] T E(xix) HE (x,x3)]  E(xi9141)
=Ey; 1 — 2E(yer1x)) [E(xex)] T E(xiys1) + E(yx) [E(xx))] E(xyi41)
= Eyt2+1 - E(?Jtﬂxg)[E(thé)]_lE(XtytH)‘



LP is closely related to ordinary least squares (OLS) regression, but still have diffirences between them.

OLS
A linear regression model (given a sample of T observations on ;. 1):

Yo =0Yi + e )
Y3 =9Ys + 6
Yi=¢Ys +e3 T r

=2 =atat o ter = Vam g1 Vit Ys—goYat o+ Ve —grYe = 3 (Vi — oY)

: i=1 =1
Yr =¢Yr_1 + ey

Yrii =oYr +er

/

{Ytﬂ:c+¢m+¢m_1+---+¢TYt_T+1+et & Y =¢X te

Yripp=c+oiYi+ @i+ +or¥r+er & Yy =9 Xy +er.
Given a sample of T observations on ;41 and x; (i.e., 2T observations), the sample sum of squared residuals (SSR)
YVo=c+ Y1+ dYo+ -+ drpYorpta=¢X +e )
Vi=ct+dYot oY1+ 4+ ¢ 12 ri3+ea=0Xo+e
Vi=c+giYs+¢oYot -+ 0 oY ru+e3 =X+ e OLS r
: ==Y a = (Vi —¢'Xy)’

: i=1 =1
Yr=c+ ¢ Yro1 +0Yr o+ 4 ¢_poY1 + ey = @' Xy +er
Yrii=c+ o Yr+Yr 1+ -+ o p oY1 +er =@ Xp +ep

0" =E[(yr11 — ¢'x1)x;] =
min MSE = ¢ E(y11%x}) = ¢'E(xx}) =

¢ = E(y1x))[E(xix})] 7t
T

min SSR ~ > (Yigr — ¢'X0)?
t=1
T
Z[Y;?H 2Y; 10’ Xy + (¢'Xy)]

Z(Yﬁd 2V’ X + ¢’ X X 9)

T
= 0= (-2X,Yi +2X,X|¢)
t=1
- —1 T
= €£ = ZXtX; Z XY
| t=1 t=1
(1 < T
= |72 XX| 5 XeYim
| t=1 t=1




Obviously, ¢’ in linear projection is constructed from population moments while it in OLS regression is con-
structed from sample moments. In other words, OLS regression is a summary of the particular sample observations
(X}, and {V;}1}!, whereas linear projection is a discription of the population characteristics of the stochas-
tic process {x;, Y4152 _- However, there is a formal mathematical sense in which the two operations are the same.

Parallel between OLS and LP (cf. Hamilton, 1994, appendix 4.A, pp.113-114)

OLS — the particular sample moments, (X1, Xo,..., X7) and (Y2, Y5, ..., Yr1);
LP —  the population moments, {x;, y;11}7°

—0oQ”

Consider an artificial discrete-valued random variable x that can take on only one of sample of size T, each with
probability =:
1
T
o= e o) L
pro 2= T2 T

prob{z = X;=1,} =

1
prob{z = Xp= 1;} = T
Denote x = (x1, za, ..., x;) as the explanatory vector and X; = (X1, Xs, ..., X;)" as the real value of explanatory
vector.
T 1 T
Ex =E{z}, = Z (X; - prob{z; = X;}) = T ZXt ,
the population mean t=1 t=1
the sample mean
X1 (X7 -prob{z = X;}) X;-(Xy-prob{z =Xs}) -+ Xi:(Xp:prob{z=Xr})
, Xy (Xy -prob{z = X1}) Xo-(Xo-prob{z =Xo}) -+ Xo-(Xp-prob{z= Xr})
E(xx") = : : :
—— : : e :
the population second moment X - (Xl . prob{ac — Xl}) X - (X2 . prob{x — XQ}) coo Xop- (XT . prob{ac — XT})
T
1
= 72 XX
t=1
the sample second moment
1
= T(XIXII + Xo X5 + -+ X X7)
( _Xl
1 Xo
—— X, X, --- X e
T : [ 1 A2 T] +
\ :XT
([ X2 XX, - X Xr
1 XX, X22 e XoXp
T : S
\ Xr Xy XXy --- X%
T . T

varz = E[(z — Ex)?] = Z (X, — EX;)* - prob{z; = X,}| = 7{ Z(Xf —EX,)>

t=1 t=1



We can construct a second artificial variable y that can take on one of the discrete values (yo,ys, ..., Y7r+1)-
Notice that these are not observations on y.
Posit that the joint distribution of x and y is given by

1
prob{x =X;,y =Y, 1} = T fort=1,2,...,T.

Then

T
1
E(xy) = T Z XY
t=1

The coefficient for a linear projection of y on x is the value of ¢ that minimizes

o 1

720

Z }/;/+1 — ¢/Xt)2 = min SSR

t=1

min MSE = E(y — ¢'x)

Thus, the formulas for an OLS regression can be viewed as a special case of formulas for a linear projection.

Notice that is the stochastic process {x;, y:41}:2 . is covariance-stationary and ergodic! for second moments,
then the sample moments will converge to the population moments as the sample size T goes to infinity, i.e.,

cp . .
o — ¢ < a consistent estimator.

lef. Miao 2014 ch.4, p.115
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