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1 Exercises and Questions

1. Exercises:
Enders (2015, ch.1: E7, ch.2: E1)
2. Qusetions (learning objectives):
1) Why ϕ ̸= 1?
2) Lag Operators vs. Forward Operators (LF = 1)
3) Dynamic Multipliers vs. Impulse Responses
4) ci =?

2 White Noise and Expectations

The basic building block of discrete stochastic time-series models is the white noise process:

yt = ϵt, ϵt ∼ i.i.d. N (0, σ2
ϵ )

i.e., yt normal and independent over time. However, time series are typically not iid (e.g., if GDP today
is unusually high, GDP tomorrow is also likely to be unusually high.)

Time-series consists of interesting parametric models for the joint distribution of {yt}. The models
impose structure, which we must evaluate to see if it captures the features we think are present in the
data (stylized facts). In turn, they reduce the estimation problem to the estimation of a few parameters
of the time-series model.
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A white noise process


Eϵt = E(ϵt|ϵt−1, ϵt−2, . . .) = E(ϵt|all information at t− 1) = E(ϵt−1) = 0

Eϵ2t = var(ϵt) = var(ϵt|ϵt−1, ϵt−2, . . .) = var(ϵt|all information at t− 1) = Eϵ2t−1 = σ2
ϵ

E(ϵtϵτ ) = E(ϵtϵt−j) = E(ϵt−jϵt−j−s) = cov(ϵt−j, ϵt−j−s) = 0, for j ̸= 0 or t ̸= τ ← ⊥

An independent white noise process


Eϵt = 0

Eϵ2t = σ2
ϵ

E(ϵtϵτ ) = 0, for t ̸= τ cov(ϵt, ϵτ ) = 0
uncorrelation⇐======⇒ E(ϵtϵτ ) = EϵtEϵτ

Pro(ϵt, ϵτ ) = Pro1(ϵt)Pro2(ϵτ ) independent

The Gaussian white noise process



Eϵt = 0

Eϵ2t = σ2
ϵ

E(ϵtϵτ ) = 0, for t ̸= τ

Pro(ϵt, ϵτ ) = Pro1(ϵt)Pro2(ϵτ )

ϵt ∼ (0, σ2
ϵ ) normal distribution

By itself, ϵt is a pretty boring process since it does not capture the interesting property of persistence
that motivates the study of time series. Most of the time we will study a class of models created by
taking linear combinations of ϵt:

yt = ϵt ← white noise

yt = ϵt + θϵt−1 ← MA(1)

yt = ϵt + θ1ϵt−1 + · · ·+ θqϵt−q
θ0≡1
=
∑q

i=0 θiϵt−i ← MA(q)

yt = c+ ϕyt−1 + ϵt ← AR(1)→ if c = (1− ϕ)ȳ ⇒ (yt − ȳ) = ϕ(yt−1 − ȳ) + ϵt

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt = c+
∑p

i=1 ϕiyt−i + ϵt ← AR(p)

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q ← ARMA(p, q)

A(L)yt = ϵt︸ ︷︷ ︸
AR

{
AR(1): (1− ϕL)yt = ϵt

AR(p): (1 + ϕ1L+ · · ·+ ϕpL
p)yt = ϵt

} ARMA︷ ︸︸ ︷
A(L)yt = B(L)ϵt

{
MA(1): yt = (1 + θL)ϵt

MA(q): yt = (1 + θ1L+ · · ·+ θqL
q)ϵt

}
yt = B(L)ϵt︸ ︷︷ ︸

MA

.

AR forms are the easiest to estimate, since the OLS assumptions still apply;
MA forms are the easiest to find variances and covariances.
1) AR(1) to MA(∞): yt = ϕyt−1 + ϵt

by iteration or lag-operators
================⇒ yt =

∑∞
i=0 ϕ

iϵt−i;
2) AR(p)1 to MA(∞);

3) MA(q) to AR(∞): yt = B(L)ϵt
it’s invertible
=======⇒ B(L)−1yt = ϵt;

4) ARMA(p, q)
the solution−−−−−−→ MA(∞).

3 Stationarity and Ergodicity

3.1 Strong stationarity (SS)

If the joint probability distribution (various moments including the first- and second- moment etc.)
function of yt−h, . . . , yt, . . . , yt+h is independent of t for all h, then the process {yt} is strongly/strictly
stationary. SS is useful, e.g., a nonlinear function of a SS variable is SS.

1It can be expressed as a vector AR(1)
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3.2 Weak stationarity (WS)

The unconditional covariances vs. The conditional covariance

Weak stationarity is often misunderstood. The definition merely requires that the unconditional
covariances are not a function of time.

Eg1. If the conditional covariances of a series vary over time, as in ARCH models, the series can
still be stationary.

Eg2. “A unit root” is one form of nonstationarity, but there are lots of others.
Eg3. If a series has breaks in trends, or if a series changed over time, then it may be “nonstationary”

(when the trend break or structural shift occurs at one point in time no matter how history comes
out), but it may be not (when breaks or shifts occur stochasticly→the unconditional covariances will no
longer have a time index, then it still be weakly stationary).

AR lag polynomials are invertible & MA lag polynomials are square summable.

(1) If and only if the impluse-response function (
∑∞

h=0 β
h ∂yt+h

∂ϵt
=
∑∞

h=0 β
hFh

11) eventually decays
exponentially.
⇕
(2) If the eigenvalues of F in AR(1) all lie inside the unit circle (|F− λI| = 0), or if all roots of the

lag polynomial A(L) = 1− ϕ1L− ϕ2L
2 − · · · − ϕpL

p lie outside the unit circle (i.e., the lag polynomial
is invertible) then the original AR(p) model turns out to be convariance-stationary.2

⇕
(3) Weak stationarity does not require the MA polynomial B(L) = 1 + θ1L + θ2L

2 + · · · + θqL
q to

be invertible.
⇕
(4) If neither the mean nor the variance depend on time t (i.e., they are finite3) and the autoco-

variances E(ytyt−h) depend only on h but not t, then the stochastic process is said to be covariance-
stationary4(CovS, weakly stationary/2nd-order stationary/wide-sense stationary):

Eyt = Eyt−h = µ,

var(yt) ≡ E(yt − µ)2 = E(yt−h − µ)2 ≡ var(yt−h) = σ2
ϵ

µ=c←−−− yt = c+ ϵt,

cov(yt, yt−h) ≡ E[(yt − µ)(yt−h − µ)] = E[(yt−j − µ)(yt−j−h − µ)] ≡ cov(yt−j, yt−j−h) = γh

autocorrelation(yt, yt−h) ≡ ρh ≡
γh
γ0

=
E(yt − µ)(yt−h − µ)

E(yt − µ)(yt−0 − µ)
=

cov(yt, yt−h)

var(yt)
.

2For a general ARMA(p, q) model, write it using lag operators so that(
1−

p∑
i=1

ϕiL
i

)
yt = c+

q∑
i=0

θiϵt−i ⇒ ypt =
c+

∑q
i=0 θiϵt−i

1−
∑p

i=1 ϕiLi
.

Notice that the particular solution is convergent so that the linear stochastic DE is stable (the stability condition is
that the roots of 1−

∑
ϕiL

i must lie outside the unit circle or the eigenvalues of λp − ϕ1λ
p−1 − ϕ2λ

p−2 − · · · − ϕp = 0 all
lie inside the unit circle).

3Note that a strongly stationary process need not have a finite mean and/or variance
4Autocovariance is the covariance between yt and its own lags; Cross-covariance refers to the covariance between one

series and another.
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3.3 The relationship between strong- and weak- stationarity

{
1. SS does not imply WS but SS + Eyt,Ey2t <∞⇒WS;

2. WS does not imply SS but WS + normality⇒ SS.

3.4 Weak stationarity restrictions

1) MA(∞) MA(q) is a special case

yt =
∞∑
i=0

θiϵt−i



{ϵt} is a white-noise process

{yt} is not a white-noise process


Eyt = 0 (

√
)

var(yt) = σ2
ϵ

∑∞
i=0 θ

2
i (
√
)

cov(yt, yt−h) = (θh + θ1θh+1 + θ2θh+2 + · · · )σ2
ϵ ̸= 0 (×)

{yt} is CovS



Eyt = Eyt−h = µ= 0 (
√
)

var(yt) = var(yt−h) = σ2
ϵ

∞∑
i=0

θ2i

{∑
finite is required for i = 1, . . . , q (

√
)∑

finite is required for i = 1, . . . ,∞ (
√

)

cov(yt, yt−h) = E[(yt − 0)(yt−h − 0)] = E(ytyt−h) = σ2
ϵ

∑∞
i=0 θiθh+i

{∑
(
√

)∑
(
√

)

The iff conditions for any MA process to be covariance stationary are for the
∑

θ2i and
∑

θiθh+i to be
finite.

2) AR(1)5

(1) with an initial condition y0

yt = c+ ϕ1yt−1 + ϵt,

⇒ yt = c
t−1∑
i=0

ϕi + y0ϕ
t +

t−1∑
i=0

ϕiϵt−i ← with an initial condition

⇒ Eyt = c
t−1∑
i=0

ϕi + y0ϕ
t Eyt ̸=Eyt+h(both means are time dependent)⇐========================⇒

the sequence cannot be stationary
Eyt+h = c

t+h−1∑
i=0

ϕi + y0ϕ
t+h;

or⇒ lim yt
t→∞
=

c

1− ϕ
+

∞∑
i=0

ϕiϵt−i (vs. yt = Aϕt +
c

1− ϕ
+

∞∑
i=0

ϕiϵt−i without an initial condition)

⇒ E lim yt =
c

1− ϕ

Eyt=Eyt+h(both means are finite and time independent)⇐===============================⇒
one of stationarity conditions

E lim yt+h =
c

1− ϕ
,

⇒ var(yt) = E(yt − µ)2 = E(lim yt − E lim yt)
2 = E

(
∞∑
i=0

ϕiϵt−i

)2

= (1 + ϕ2 + ϕ4 + · · · )σ2
ϵ =

σ2
ϵ

1− ϕ2
,

⇒ cov(yt, yt−h) = E[(yt − µ)(yt−h − µ)] = E

[(
∞∑
i=0

ϕiϵt−i

)(
∞∑
i=0

ϕiϵt−h−i

)]
= (1 + ϕ2 + · · · )ϕhσ2

ϵ =
ϕhσ2

ϵ

1− ϕ2
.

5Notice that the solution of {yt} converges but {yt} may not be stationary, except t→∞
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(2) without the inital value y0,

yt = Aϕt +
c

1− ϕ
+

∞∑
i=0

ϕiϵt−i,

Eyt = Aϕt +
c

1− ϕ
= f(t).

It’s clear that {yt} cannot be stationary unless yht = Aϕt = 0→

{
A = 0 (i.e.,{yt} always in equilibrium)

|ϕ| < 1&t→∞
3) AR(p)

yt = c+

p∑
i=1

ϕiyt−i+ϵt



the homogenous equationyt − ϕ1yt−1 − ϕ2yt−2 − · · · − ϕpyt−p = 0;

ypt = c

1−
p∑

i=1
ϕi

+
∞∑
i=0

xiϵt−i


x0 − 1 = 0 ⇒ x0 = 1,

x1− ? = 0,
...

xi − ϕ1xi−1 − ϕ2xi−2 − · · · − ϕpxi−p = 0.

⇓

Eypt = Eypt−h = c
1−

∑
ϕi>0 ∵|ϕi|<1 is a necessary condition for λi<1

∴ finite & time invariant,

var(ypt ) = var(ypt−h) = E(
∞∑
i=0

xiϵt−i)
2 = σ2

ϵ

∑
x2
i

{∑
is finite for i = 1, . . . , p (

√
)∑

is finite for i = 1, . . . ,∞ if |xi| < 1 (
√

)

cov(ypt , y
p
t−h) = σ2

ϵ (xh + x1xh+1 + x2xh+2 + · · ·+ xpxh+p) = σ2
ϵ

p∑
i=0

xixh+i

{∑
(
√

)∑
(
√

)

4) ARMA(2, 1) (from the previous analysis, we know that yht = 0)

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ϵt + θϵt−1
undetermined coefficients
==============⇒ ypt = k0 + k1t+

∑∞
i=0 xiϵt−i;

yt = 0 + ϕ1yt−1 + ϕ2yt−2 + ϵt + θϵt−1
undetermined coefficients
==============⇒ ypt =

∑∞
i=0 xiϵt−i



x0 = 1,

x1 = ϕ1x0 + θ = ϕ1 + θ,

x2 = ϕ1x1 + ϕ2x0,

x3 = ϕ1x2 + ϕ2x1,
...

xi = ϕ1xi−1 + ϕ2xi−2.

Q: If the characteristic roots of the ARMA(2, 1) process are within the unit circle, the {xi} must
constitute a convergent sequence?

A: Notice that xi = ϕ1xi−1+ϕ2xi−2 for all i ≥ 2, this is the same homogeneous form with the original
process, i.e., yt = ϕ1yt−1 + ϕ2yt−2.

Eyt = Eyht + Eypt = 0 + Eypt = 0 + 0 = 0 = Eyt−h ∀t&h;

var(yt) = E(x0ϵt + x1ϵt−1 + x2ϵt−2 + · · · )2 = σ2
ϵ

∞∑
i=0

x2
i = var(yt−h);

cov(yt, yt−h) = σ2
ϵ (xh + xh+1x1 + xh+2x2 + · · · )

cov(yt,yt−1),cov(yt,yt−2),...⇐================ .

Conversely, if the characteristic roots do not lie within the unit circle, the {xi} sequence will not be
convergent. As such, the {yt} sequence cannot be convergent.
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5) ARMA(p, q)

yt = c+

p∑
i=1

ϕiyt−i+

q∑
i=0

θiϵt−i



yht =


p∑

i=1

Aiλ
t
i distint and real roots;

λt
m∑
i=1

Ait
i−1 +

p∑
i=m+1

Aiλ
t
i m repeated real roots.

ypt = c

1−
p∑

i=1
ϕi

+ ϵt

1−
p∑

i=1
ϕiLi

+ θ1ϵt−1

1−
p∑

i=1
ϕiLi

+ θ2ϵt−2

1−
p∑

i=1
ϕiLi

+ · · ·


Eypt = (

√
)

var(ypt ) = (
√

)

cov(ypt , y
p
t−h) = (

√
)

Note that each of expressions on the RHS of the ypt is stationary as long as the roots of 1−
∑

ϕiL
i are

outside the unit circle and given the MA(q) is stationary, only the roots of the autoregressive portion
of MA(q) determine whether the {yt} sequence is stationary.

3.5 Ergodicity

For many applications, stationarity and ergodicity turn out to amount to the same requirements.
For purposes of clarifying the concepts of stationarity and ergodicity, however, it may be helpful to
consider an example of a process that is stationary but not ergodic, · · · cf. Hamilton (1994, ch.3.1)

4 The Autocorrelation Function (ACF) or Correlogram

4.1 Autocovariances/autocorrelations of ARMA(p, q)

The autocovariances and autocorrelations serve as useful tools to identifying and estimating time-
series models.

1) Gaussian white noise

yt = ϵt ∼ i.i.d. N (0, σ2
ϵ ),

µ ≡ Eyt = Eϵt = 0,

γ0 ≡ var(yt) = var(ϵt) = σ2
ϵ ,

γh ≡ cov(yt, yt−h) = cov(ϵt, ϵt−h) = 0,

ρh =
γh
γ0
≡ corr(yt, yt−h) =

cov(ϵt, ϵt−h)

var(ϵt)
=

{
1, h = 0,

0, h ̸= 0.
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2) MA(1)

yt = ϵt + θϵt−1,

µ = Eyt = 0,

γ0 = var(yt) = E(ytyt) = E[(ϵt + θϵt−1)(ϵt + θϵt−1)] = (1 + θ2)σ2
ϵ ,

γ1 = cov(yt, yt−1) = E(ytyt−1) = E[(ϵt + θϵt−1)(ϵt−1 + θϵt−2)] = θσ2
ϵ ,

γ2 = cov(yt, yt−2) = E(ytyt−2) = E[(ϵt + θϵt−1)(ϵt−2 + θϵt−3)] = 0,

...

γh = cov(yt, yt−h) = E(ytyt−h) = E[(ϵt + θϵt−1)(ϵt−h + θϵt−h−1)] = 0.

⇒



ρ0 = corr(yt, yt) =
γ0
γ0

= 1,

ρ1 = corr(yt, yt−1) =
γ1
γ0

= θ
1+θ2

,

ρ2 = corr(yt, yt−2) =
γ2
γ0

= 0,
...

ρh = corr(yt, yt−h) =
γh
γ0

= 0.

Figure 1: Theoretical ACF Patterns of MA(1) with −1 < θ < 0 1

2) MA(2)

yt = ϵt + θ1ϵt−1 + θ2ϵt−2,

µ ≡ Eyt = Eϵt + θ1Eϵt−1 + θ2Eϵt−2 = 0,

γ0 ≡ var(yt) = E[(ϵt + θ1ϵt−1 + θ2ϵt−2)(ϵt + θ1ϵt−1 + θ2ϵt−2)] = (1 + θ21 + θ22)σ
2
ϵ ,

γ1 ≡ cov(yt, yt−1) = E[(ϵt + θ1ϵt−1 + θ2ϵt−2)(ϵt−1 + θ1ϵt−2 + θ2ϵt−3)] = (θ1 + θ1θ2)σ
2
ϵ ,

γ2 ≡ cov(yt, yt−2) = E[(ϵt + θ1ϵt−1 + θ2ϵt−2)(ϵt−2 + θ1ϵt−3 + θ2ϵt−4)] = θ2σ
2
ϵ ,

γ3 ≡ cov(yt, yt−3) = E[(ϵt + θ1ϵt−1 + θ2ϵt−2)(ϵt−3 + θ1ϵt−4 + θ2ϵt−5)] = 0,

...

γh ≡ corr(yt, yt−h) = 0 for h ≥ 3,

⇒



ρ0 =
γ0
γ0
≡ corr(yt, yt) = 1,

ρ1 =
γ1
γ0
≡ corr(yt, yt−1) =

θ1+θ1θ2
1+θ21+θ22

,

ρ2 =
γ2
γ0
≡ corr(yt, yt−2) =

θ2
1+θ21+θ22

,

ρ3 =
γ3
γ0
≡ corr(yt, yt−2) = 0,

...

ρh = γh
γ0
≡ corr(yt, yt−h) = 0 for h ≥ 3.

1Source: Enders (2015, p.61)
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4) AR(1)

yt = c+ ϕyt−1 + ϵt,

⇒ yt =
c

1− ϕ
+

ϵt
1− ϕL

,

=
c

1− ϕ
+ (1 + ϕL+ ϕ2L2 + · · · )ϵt, |ϕ| < 1

=
c

1− ϕ
+

∞∑
i=0

ϕiϵt−i,

⇒ µ = Eyt =
c

1− ϕ
,

⇒ γ0 = cov(yt, yt−0) =var(yt) = E(yt − Eyt)2 =

(
∞∑
i=0

ϕiϵt−i

)2

=
σ2
ϵ

1− ϕ2
,

⇒ γh = cov(yt, yt−h) = E[(yt − µ)(yt−h − µ)] =

(
∞∑
i=0

ϕiϵt−i

)(
∞∑
i=0

ϕiϵt−h−i

)
=

ϕh

1− ϕ2
σ2
ϵ .

⇒



ρ0 = corr(yt, yt) =
γ0
γ0

= 1,

ρ1 = corr(yt, yt−1) =
γ1
γ0

= ϕ,

ρ2 = corr(yt, yt−2) =
γ2
γ0

= ϕ2,
...

ρh = corr(yt, yt−h) =
γh
γ0

= ϕh.

Note that γh = γ−h for a scalar process. We will see that Γh ̸= Γ−h for a vector process at Lec 3.
The plot of ρh against h should converge to 0 geometrically if the series is stationary (i.e.,|ϕ| < 1).

Figure 2: Theoretical ACF Patterns of AR(1) with 0 < ϕ < 1 and −1 < ϕ < 0 1

1Source: Enders (2015, p.61)
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5) AR(2)

yt = 0+ϕ1yt−1 + ϕ2yt−2 + ϵt ← omit c since it has no effect on the ACF and note that E(ϵtyt−h) =

{
σ2
ϵ for h = 0

0 for h ̸= 0
.

µ = Eyt =
c

1− ϕ1L− ϕ2L2
= 0,

γ0 = E(ytyt) = E[(ϕ1yt−1 + ϕ2yt−2 + ϵt)yt] = ϕ1E(yt−1yt) + ϕ2E(yt−2yt) + E(ϵtyt) = ϕ1γ1 + ϕ2γ2 + σ2
ϵ ,

γ1 = E(ytyt−1) = E[(ϕ1yt−1 + ϕ2yt−2 + ϵt)yt−1] = ϕ1E(yt−1yt−1) + ϕ2E(yt−2yt−1) + E(ϵtyt−1) = ϕ1γ0 + ϕ2γ1,

γ2 = E(ytyt−2) = E[(ϕ1yt−1 + ϕ2yt−2 + ϵt)yt−2] = ϕ1E(yt−1yt−2) + ϕ2E(yt−2yt−2) + E(ϵtyt−2) = ϕ1γ1 + ϕ2γ0,

...

γh = E(ytyt−h) = E[(ϕ1yt−1 + ϕ2yt−2 + ϵt)yt−h] = ϕ1E(yt−1yt−h) + ϕ2E(yt−2yt−h) + E(ϵtyt−h) = ϕ1γh−1 + ϕ2γh−2︸ ︷︷ ︸
The Yule-Walker equations

.

⇒



ρ0 = corr(yt, yt) =
γ0
γ0

= 1,

ρ1 = corr(yt, yt−1) =
γ1
γ0

= ϕ1ρ0 + ϕ2ρ1 ⇒ ρ1 =
ϕ1

1−ϕ2
,

ρ2 = corr(yt, yt−2) =
γ2
γ0

= ϕ1ρ1 + ϕ2ρ0 ⇒ ρ2 =
ϕ2
1

1−ϕ2
+ ϕ2,

...

ρh = corr(yt, yt−h) =
γh
γ0

= ϕ1ρh−1 + ϕ2ρh−2 ← a 2nd-order DE with two initial condtions ρ0 and ρ1.

Note that

γ0= var(yt) = ϕ1γ1 +ϕ2γ2 + σ2
ϵ ⇒ γ0 = ϕ1(ρ1γ0)+ϕ2(ρ2γ0)+ σ2

ϵ ⇒ γ0(1−ϕ1ρ1−ϕ2ρ2) = σ2
ϵ ⇒ γ0 = · · ·

Although ρh are cumbersome to derive, we can easily characterize their properties by resorting to the
2nd-order DE with initial values ρ0 and ρ1. Note that the stationarity condition for yt necessitates that
the characteristic roots of the 2nd-order DE lie inside the unit circle which let the ρh sequence will be
convergent.

The properties of the various ρh follow directly from the homogeneous equation

yt − ϕ1yt−1 − ϕ2yt−2 = 0.

If the discriminant is negative, i.e., d ≡
√

ϕ2
1 + 4ϕ2 < 0, the characteristic roots (λ1, λ2 =

ϕ1±
√

ϕ2
1+4ϕ2

2
)

are imaginary so that the solution oscillates. R =

√(
ϕ1

2

)2
+

(√
−(ϕ2

1+4ϕ2)

2

)2

=
√
−ϕ2, then, |R| < 1 is

also a stable condition.

Figure 3: Theoretical ACF Patterns of AR(2) with 0 < ϕ1 < 1 and −1 < ϕ2 < 0 1

1Source: Enders (2015, p.61)
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6) ARMA(1, 1)

yt = 0 + ϕyt−1 + ϵt + θϵt−1,

µ = Eyt = 0,

γ0 = E(ytyt) = E[(ϕyt−1 + ϵt + θϵt−1)yt] = ϕE(yt−1yt) + E(ϵtyt) + θE(ϵt−1yt) = ϕ1γ1 + σ2
ϵ + θ(ϕ+ θ)σ2

ϵ ,

γ1 = E(ytyt−1) = E[(ϕyt−1 + ϵt + θϵt−1)yt−1] = ϕE(yt−1yt−1) + E(ϵtyt−1) + θE(ϵt−1yt−1) = ϕγ0 + θσ2
ϵ ,

γ2 = E(ytyt−2) = E[(ϕyt−1 + ϵt + θϵt−1)yt−2] = ϕE(yt−1yt−2) + E(ϵtyt−2) + θE(ϵt−1yt−2) = ϕγ1,

...

γh = E(ytyt−h) = E[(ϕyt−1 + ϵt + θϵt−1)yt−h] = ϕE(yt−1yt−h) + E(ϵtyt−h) + θE(ϵt−1yt−h) = ϕγh−1.

⇒



ρ0 = corr(yt, yt) =
γ0
γ0

= 1,

ρ1 = corr(yt, yt−1) =
γ1
γ0

= f(ϕ, θ)⇐

{
γ0 = ϕγ1 + σ2

ϵ + θ(ϕ+ θ)σ2
ϵ

γ1 = ϕγ0 + θσ2
ϵ

ρ2 = corr(yt, yt−2) =
γ2
γ0

= ϕγ1
γ0

= ϕρ1
...

ρh = corr(yt, yt−h) =
γh
γ0

= ϕγh−1

γ0
= ϕρh−1 with an initial value ρ1.

Thus, the ACF for an ARMA(1, 1) process is such that the magnitue of ρ1 depends on both ϕ and θ.
Beginning with ρ1, the ACF of an ARMA(1, 1) process looks like that of the AR(1) process.

Figure 4: Theoretical ACF Patterns of ARMA(1, 1) with −1 < ϕ < 0 and −1 < θ < 0 1

7) AMRA(p, q)
Beginning after lag q, the values of the ρi will satisfy

ρi = ϕ1ρi−1 + ϕ2ρi−2 + · · ·+ ϕpρi−p.

The previous p values can be treated as initial condtions that satisfy the Yule-Walker equations. For
these lags, the shape of the ACF is determined by the characteristic equation.

4.2 Admissible autocorrelation function

Obviously, |ρi| < 1 is a necessary condition. But it’s not sufficient for {ρi} to be the autocorrelation
function of an ARMA process.

We can find a stronger requirement than |ρi| < 1 under the extra condition that the variance of any
random variable is positive (cf. Cochrane, 2005, pp.27-29).

1Source: Enders (2015, p.61)
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5 PACF and Sample Autocorrelations

The partial autocorrelation function (PACF) and the sample autocorrelations of ARMA models (cf.
Enders, 2015, pp.64-67).

The pth PACF is related to the coefficient on xt−p of a regression of xt on xt−1, xt−2, . . . , xt−p. Thus
for an AR(p), the (p+1)th and higher partial autocorrelations are 0. In fact, the PACF behaves in an
exactly symmetrical fashion to the ACF: the PACF of an MA(q) is damped sines and exponentials after
q (cf. Cochrane, 2005).

In an AR(1) process, the autocorrelation between yt and yt−2

yt = ϕyt−1 + ϵt,

yt−1 = ϕyt−2 + ϵt−1,

...

⇒ ρ2 = corr(yt, yt−2) = corr(yt, yt−1)corr(yt−1, yt−2) = ρ21.

However, the partial autocorrelation between yt and yt−2 eliminates the effects of the intervening values
yt−1; the partial autocorrelation between yt and yt−3 eliminates the effects of the intervening values
yt−1, yt−2, and so on.

One can form the partial autocorrelations from the autocorrelations

ρp1 = ρ1,

ρp2 =
ρ2 − ρ21
1− ρ21

,

...

ρph =
ρh −

∑h−1
i=1 ϕh−1,iρh−i

1−
∑h−1

i=1 ϕh−1,iρi
, h = 3, 4, 5, . . . .

For stationary processes, the key points to note are the follwing: (see Enders 2015, p.66).
Suppose that a researcher collected sample data and plotted the ACF and PACF. If the actual

patterns compared favorably to the theoretical patterns, the researcher might try to estimate data using
this theory.

Given that a series is stationary, we can use the sample mean (ȳ), the sample variance (σ̂2), and the
sample autocorrelations (ρ̂) to estimate the parameters of the actual data-generating process:

ȳ =

∑T
t=1 yt
T

,

σ̂2 =

∑T
t=1(yt − ȳ2)

T
,

ρ̂i =

∑T
i+1(yt − ȳ)(yt−i − ȳ)∑T

t=1(yt − ȳ)2
.

I postpone the following contents untill Lec 6.

5.1 Specification

A strategy for appropriate model selection:
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Before an ARMA(p, q) model can be estimated we need to select the order p and q of the ARMA
(cf. MIT-TSA)

ACF and PACF “identify” the appropriate “parsimonious” AR, MA, or ARMA process.
AIC, SBC “identify”the appropriate p and/or q.
Again, I refer the reader to Enders (2015, p.69) to find details.

5.2 Estimation

It’s very uncommon to estimate moving average terms.
An AR process are easy to estimate since the OLS assumption still apply, whereas MA terms have

to be estimated by maximum likelihood since every MA has an AR(∞) representation, pure AR can
approximate vector MA processes.

In this stage, the goal is to select a stationary and parsimonious model that has a good fit which in
turn examin the various coefficients (ϕi, θi).

Enders(2015, p.70), MIT-TSA, etc.

5.3 Diagnostic checking

(1) In this stage, the goal is to ensure that the residuals from the estimated model mimic a white-
noise process.
(2) Incorporating additional coefficients will necessarily increase fitness (R2 ↑) at a cost of reducing
degrees of freedom. Box and Jenkins (1976) argue that parsimonious models fits the data well without
incorporating any needless coefficients and it can produce better forecasts than overparameterized models
(e.g., AR(1) with ony one coefficient ⇔ MA(∞) with many many coefficients).

(1−ϕ1L−ϕ2L
2)yt = (1+θ1L+θ2L

2+θ3L
3)ϵt

if, a common factor⇐==========⇒ (1 + αL)(1+ϕL)yt = (1 + αL)(1+θ1L+θ2L
2)ϵt.

6 The 1st of 3 Fundamental Representations

If two processes have the same autocovariance function, they are the same process. Matching fun-
damental representations is one of the most common tricks in manipulating time series (see Cochrane
2005, pp.26-27).

7 Autocovariance-Generating Functions

See Lec 7: Spectral Analysis (cf. Hamilton 1994, chaper 3.6, chaper 10.3, and chapter 6)
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