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The modern use of TSMs: hypothesis testing

Figure: Real πt and predicted πt by sticky price theory

Source: Deng (2018, PhD thesis, ch.4.)
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Cont’d

Figure: Real πt and predicted πt by sticky information theory

Source: Deng (2018, PhD thesis, ch.4.)
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Cont’d: theoretical hypotheses

Figure: Two rational expectations and one irrational expectation

Source: Deng, Lecture notes on macroeconomic theory, 2019
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The traditional use of TSMs: forecasting

Figure: Hypothetical Time-Series

Source: Enders (2015, p.2)
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Cont’d

If we know

yt+1 = a0 + a1yt + ϵt+1,

then

Etyt+1 = a0 + a1yt,

and since

yt+2 = a0 + a1yt+1 + ϵt+2,

then

Etyt+2 = a0 + a1Etyt+1

= a0 + a1(a0 + a1yt)

= a0 + a0a1 + (a1)
2yt.

The general methodology used to make such forecasts entails finding the

equation of motion driving a stochastic process and using that equation to

predict subsequent outcomes.
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We can think of a time series as being composed of:

Yt = Tt + St + It,

Tt = 1 + 0.1t,

St = 1.6 sin
(π
6
t
)
,

It = 0.7It−1 + ϵt.

where Tt=trend in t (permanent); St=cycle (e.g.,seasonal component) in t

(temporary and predictable). ⇒ Both functions of time t.

It=the irregular disturbance in t; ϵt=the random disturbance in t (Noise:

unpredictable).

In a most general form, a DE expresses the value of a variable as a function

of its own lagged values, time, and other variables.
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Reduced-form equations and structural equations

Consider Samuelson’s (1939) classic model:
Yt = Ct + It,

Ct = αYt−1 + ϵCt, 0 < α < 1,

It = β(Ct − Ct−1) + ϵIt, β > 0.

In this Keynesian model, Yt, Ct, It are endogenous variables; Yt−1, Ct−1 are

called predetermined or lagged endogenous variables; ϵCt, ϵIt are zero mean

random disturbances; α, β are parameters to be estimated or calibrated.

It = β[(αYt−1 + ϵCt)− Ct−1] + ϵIt

= β[(αYt−1 + ϵCt)− (αYt−2 + ϵC,t−1)] + ϵIt

= αβ(Yt−1 − Yt−2) + β(ϵCt − ϵCt−1) + ϵIt

Yt = (αYt−1 + ϵCt) + [αβ(Yt−1 − Yt−2) + β(ϵCt − ϵCt−1) + ϵIt]

= α(1 + β)Yt−1 − αβYt−2 + (1 + β)ϵCt + ϵIt − βϵCt−1

≡ ϕ1Yt−1 + ϕ2Yt−2 + wt. where wt = (1 + β)ϵCt + ϵIt − βϵCt−1

Yt = ϕ0 +
∑

ϕiYt−i + wt. i = 1 · · · p, wt : the forcing process
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The random walk hypothesis

An important special case for the {wt} sequence is

wt =

∞∑
i=0

βiϵt−i, where βi are constants or 0.

The sequence {ϵt} are not functions of the yt → unspecified exogenous

shocks, e.g., let {ϵt} be a random error term and set

β0 = 1, β1 = β2 = · · · = 0, then

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt,

yt = 0 + 1× yt−1 + ϵt, ← the random walk model

∆yt = ϵt, a random disturbance term: Eϵt = 0

∆yt = ϕ0 + ϕ1yt−1 + ϵt the testable restriction: ϕ0 = ϕ1 = 0.
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yt − yt−1 = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt − yt−1,

⇒ ∆yt = ϕ0 + γyt−1 +

p∑
i=2

ϕiyt−i + ϵt, where γ = (ϕ1 − 1).

A solution to a difference equation (is a function rather than a number)

expresses the value of yt as a function of the elements of the {ϵt} and t and

possibly initial conditions.

For example

yt = yt−1+2
a solution
=⇒ yt = 2t+c → yt−1 = 2(t−1)+c

verify
=⇒ yt−yt−1 = 2.

Another example

It = 0.7It−1+ϵt
a solution
=⇒ It =

∞∑
i=0

0.7iϵt−i → It−1 = · · · verify
=⇒ It−0.7It−1 = ϵt.

Q&A: Reduced-form equations vs. Solutions
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Textbooks

Enders (2015), Applied Econometric Time Series, 4th ed.

Lütkepohl and KRätzig (2004), Applied Time Series Econometrics.

Lütkepohl (2005), New Introduction to Multiple Time Series Analysis.

Cochrane (2005), Time Series for Macroeconomics and Finance.

Hamilton (1994)

MIT-open course (2007)

Chiang (2005, 4th ed.)

R, Matlab, Python; Dynare, JMulti, Eviews.

Time Series Analysis and Its Applications with R example.

Time Series Analysis Using Matlab and R.

Univariate Time Series Analysis with Matlab.

Time Series Analysis with Python.

Lütkepohl (2004, 2005) use JMulti.
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Requirements

60%, final exam.

30%, assignment.

10%, attendence.
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Course Outline

The Mid-Autumn Festival (week 1)

Lec 1. 4 Methods to Solve Linear Defference Equations (week 2-3)

1.1 Solving DEs with Constant Coefficients and Constant Terms (Chiang,

ch.17; Enders, ch.1)

1.2 Solving DEs with Constant Coefficients and Variable Terms (Enders,

ch.1; Hamilton, ch.2, ch.1)

Lec 2. Covariance-Stationary ARMA Models (week 4-5)

2.1 Stationary Restrictions for ARMA(p, q) Models (Enders, ch.2;

Hamilton, ch.3)

2.2 The Autocorrelation Function (Enders, ch.2)

2.3 ACF+PACF+AIC+SBC → Identification/Specification →
Estimation → Diagnostic Check → Forecasting

Lec 3. Covariance-Stationary Vector Processes (week 6)

3.1 VAR(p)→VAR(1) (Hamilton, ch.10)
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Cont’d

Lec 4. Forecasting/Prediction (week 7)

4.1 Principles of Forecasting (Hamilton, ch.4)

4.2 Predicting ARMA Mdoels (Cochrane, ch.5)

4.3 Wold Decomposition Theorem (Cochrane, ch.6)

Lec 5. Parameter Calibration and Impulse Response Simulation

Lec 6. Identification and Estimation (week 8) 6.1 ARMA 6.2 VAR

Lec 7. Autocovariance-Generating Functions and Spectral Analysis (week 9)

7.1 The Autocovariance-Generating Function for ARMA Models

(Hamilton, ch.3)

7.2 The Autocovariance-Generating Function for Vector Processes

(Hamilton, ch.10, ch.6)
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Cont’d

Lec 8. Modeling Volatility (week 9)

Lec 9. Unit Roots (Models with Trend) (week 10)

Lec 10. VARs and SVARs (Multiequation Time-Series Models) (week 11-12)

Lec 11. Spectral Representation (week 13)

Lec 12. Spectral Analysis in Finite Samples (week 14)

Lec 13. Cointegration and Error-Correction Models (week 15)

Lec 14. Nonlinear Models (Chiang, 2005, ch.17.6, p.562) (week 16)
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Q & A

1) Time series econometrics (TSE) vs. Cross-section econometrics (CSE) ref.

CSE mainly deals with i.i.d.observations, while in TSE each new arriving

observation is stochastically depending on the previously observed.

The dependence screw up inferences: the ordinary CLT should be corrected

to hold for dependent observations;

The dependence allow us to make forecasts.

2) Continuous Time (Differentials) vs. Discrete Time (Differences)

3) First Order vs. Higher Order (linear vs. nonlinear; homogeneous vs.

nonhomogeneous)

4) Univariate vs. Multivariate

5) Stationary vs. Non-Stationary

6) Deterministic Difference Equation (DDE) vs. Stochastic Difference

Equation (SDE) (Homoscedasticity vs. Heteroskedasticity)

7) Classics (ARMA, VARMA; unit root, cointegration) vs. DSGE (simulated

GMM, ML, Bayesian)
18/88

https://bbs.pinggu.org/thread-7279656-1-1.html


1 Introduction (Learning Motivation, etc.)

2 Syllabus

3 DEs with Constant Coefficients and Constant Terms

4 Blackboard-Writing of Solving DEs

5 Cite a Model As an Example

6 DEs with Constant Coefficients and Variable Terms

7 Topics for Next Week

19/88



Learning Objectives

1) The first derivative dy
dt is the only one that can appear in a first-order

differential equation → ∆y
∆t , here t can now take only interger values.

∆t = 1→the 1st-oreder DE → comparing the values of y in two consecutive

periods.

2) Explain what it means to solve a DE and explain how SDE can be used

for forecasting (the role of the general solutions).

3) Demonstrate how to find the solution of DEs with constant coefficients

and constant term (the 1st-order, 2nd-order, and pth-orther).

4) Demonstrate how to find the solution of DEs with constant coefficients

and variable term (the 1st-order, 2nd-order, and pth-order; deterministic and

stochastic)

5) Explain how to use lag operators to find the particular solution to a SDE.

6) Estimation ⇒ Forecast ⇒ Interpreting ⇒ Testing hypothesis concerning

economic data.
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Definition of 1st-order and higher order DEs

Consider the function

y = f(t).

If we evaluate the function when the independent variale t takes on the

specific value t∗.

Using this same notation, yt∗+h represents the value of y when t takes on

the specific value t∗ + h.

Definition

The first difference of y is defined as the value of the function when

evaluated at t = t∗ + h minus the value of the function evaluated at t∗:

∆yt∗+h ≡ f(t∗ + h)− f(t∗)

≡ yt∗+h − yt∗ .

h→ 0 : differentials.

Since most economic data is collected over discrete periods, it’s more useful

to allow the length of the time period > 0.
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Cont’d

Using DEs, we normalize units so that h represents a unit change in t (i.e.,

h=1) and consider the sequence of equally spaced values of the independent

variable. We can drop the asterisk (*),

∆yt+1 ≡ f(t+ 1)− f(t)

≡ yt+1 − yt,

∆yt+2 ≡ f(t+ 2)− f(t+ 1)

≡ yt+2 − yt+1,

...

∆yt+p ≡ f(t+ p)− f(t+ p− 1) ≡ yt+p − yt+p−1,

∆yt ≡ f(t)− f(t− 1) ≡ yt − yt−1 ⇐ p = 0,

≡ yt+1 − yt, (see Chiang, 2005, p.545 eq.(17.1))

∆2yt ≡ ∆(∆yt) = ∆(yt − yt−1) = yt − 2yt−1 − (−1)yt−2,

∆(yt+1 − yt) = (yt+2 − yt+1)− (yt+1 − yt) = · · · , (p.568)

∆pyt = ∆(· · · (∆yt)) = yt − a1yt−1 − · · · − apyt−p.
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Solving 1st-order linear DEs with 2 methodologies

˙y(t) ≡ dy

dt
vs. ∆yt ≡

∆yt
(t+ 1)− t

.

∆yt ≡ yt+1 − yt.

∆yt = 2 ⇒ yt+1 = yt + 2
iteration
=====⇒ yt = y0 + 2t

y0=15
====== 15 + 2t;

∆yt = −0.1yt ⇒ yt+1 = 0.9yt
iteration
=====⇒ yt = y0 · 0.9t ← a homogeneous eq.;

∆yt =
n−m

m
yt ⇒ myt+1 − nyt = 0 ⇒ yt+1 =

n

m
yt ⇒ yt = y0 ·

( n

m

)t
≡ Abt;

∆yt =
n− 1

1
yt ⇒ yt+1 − nyt = 0 ⇒ yt+1 =

n

1
yt ⇒ yt = y0 ·

(n
1

)t
≡ Ant;

∆yt = (b− 1)yt + c ⇒ yt+1 − byt = c ⇒ yt+1 = byt + c ⇒ yt =?

where b and c are two constants. The general solution will consist of the

sum of two components: yht (represents the deviations of time path from

some intertemporal equilibrium level of y)+ypt (represents the intertemporal

equilibrium level of y).
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Let c = 0,

yt+1 − byt = 0 or yt+1 − ayt = 0,

which is a homogeneous equation. Solving it then get yht = Abt or yht = Abt

where (b = a).

When c ̸= 0,

now let us search for the particular solution ypt . propose a trial sulution of

the simplest form ypt = k (a constant), and ypt+1 = k, then

k = bk + c ⇒ ypt = k =
c

1− b
, b ̸= 1.

If it happens that b = 1, ypt is not defined. In this event, we employ another

form ypt = kt and ypt+1 = k(t+ 1), then

k(t+ 1) = bkt+ c ⇒ k =
c

t+ 1− bt

b=1
==== c ⇒ ypt = kt = ct.

This form of ypt is a nonconstant function of t and it therefore represents a

moving equilibrium.
25/88



Cont’d

The general solution of the first-order difference equation:

yt =

{
Abt + c

1−b , b ̸= 1;

Abt + ct = A+ ct, b = 1.

To eliminate the arbitrary constant A, we resort to an initial condition that

yt = y0.

y0 =

{
A+ c

1−b , b ̸= 1;

A+ ct = A, b = 1.
⇒ A =

{
y0 − c

1−b , b ̸= 1;

y0, b = 1.

The definite solution of the first-order difference equation:

yt =


(
y0 − c

1−b

)
bt + c

1−b , b ̸= 1;

y0b
t + ct = y0 + ct, b = 1.

The dynamic stability of equilibrium depends on the Abt term as t→∞.
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Cont’d: The dynamic stability of equilibrium

Case 1. The role of b. Assuming A = 1, the term becomes bt and the

stability depends only on the significance of b.

Figure: A Classification of the Values of b

Source: Chiang (2005, p.552)
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Figure: A Classification of the Values of b

Source: Chiang (2005, p.553)
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The essence of the preceding discussion can be conveyed in the following

general statement: The time path of bt(b ̸= 0) will be

Oscillatory

Nonoscillatory

}
if

{
b < 0

b > 0.

Convergent

Divergent

}
if

{
|b| < 1

|b| ≥ 1.

Note that the convergence of the bt expression hinges on the absolute value

of b.

Case 2. The role of A. First, the magnitude of A can serve to “blow up” (if,

say, A = 2) or “pare down” (if, say, A = 1
2 ) the values of bt. That is, it can

produce a scale effect without changing the basic configuration of the time

path. However, a negative A (if, say, A = −2) will produce a mirror effect as

well as a scale effect.
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Cont’d: Convergence to equilibrium

The solution to a homogeneous equation (Abt ↔ Aλt), as we recall,

represents the deviations from some intertemporal equilibrium level. If a

particular solution (if, say, ypt = 5) is added to the Abt term, the time path

must be shifted up vertically by a constant value of 5. This will in no way

affect the convergence or divergence of the time path, but it will alter the

level with reference to which convergence or divergence in gauged.

What the above figure is the convergence or divergence of the yht = Abt to

0. When the yp is included, it becomes the convergence or divergence of

yt = yht + ypt to the equilibrium level ypt .

When b = 1, yt = yht + ypt = Abt+ ypt = A+ ypt = y0+ ct, it can never reach

ypt unless A = 0 or y0 = 0. Recall that ypt = ct is a moving equilibrium.

With a nonzero A or y0, there will be a constant (A or y0) deviation from

the moving equilibrium, thus, this time path is to be considered divergent.
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Solving 2nd-order linear DEs

A simple variety of second-order linear and nonhomogeneous difference

equations with constant coefficients and constant term takes the form

yt+2 = a1yt+1 + a2yt + c vs. yt = ϕ1yt−1 + ϕ2yt−2 + wt.

yt = ypt + yht .

The particular solution (ypt ) defined as any solution to the complete

difference equation. where wt will be regarded as constant parameters

{w0, w1, w2, . . .} or a random variable.

Try a solution of the form ypt = k when a1 + a2 ̸= 1

k − a1k − a2k = c ⇒ ypt = k =
c

1− a1 − a2
, where a1 + a2 ̸= 1;

and of the form{
ypt = kt when a1 + a2 = 1(but at the same time a1 ̸= 2;

ypt = kt2 when a1 + a2 = 1(but at the same time a1 = 2, a2 = −1).
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k(t+ 2)− a1k(t+ 1)− a2kt = c

⇒ k =
c

(t+ 2)− a1(t+ 1)− a2t
=

c

2− a1

⇒ ypt = kt =
c

2− a1
t case of a1 ̸= 2, a1 + a2 = 1;

k(t+ 2)2 − a1k(t+ 1)2 − a2kt
2 = c

⇒ k =
c

(t+ 2)2 − 2(t+ 1)2 + t2
=

c

2

⇒ ypt = kt2 =
c

2
t2 case of a1 = 2, a1 + a2 = 1.
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yht corresponding to the homogeneous equation

yt+2 − a1yt+1 − a2yt = 0 vs. yt − ϕ1yt−1 − ϕ2yt−2 = 0.

Try a solution of the form yht = Abt, thus

Abt+2 − a1Ab
t+1 − a2Abt = 0, vs. Aλt − ϕ1Aλt−1 − ϕ2Aλt−2 = 0.

divided by Abt

========⇒ b2 − a1b− a2 = 0← the characteristic equation,

⇒ characteristic roots b1, b2 =
a1 ±

√
a21 + 4a2
2

≡ a1 ±
√
d

2
.

divided by Aλt−2

==========⇒ λ2 − ϕ1λ− ϕ2 = 0← the characteristic equation,

⇒ characteristic roots λ1, λ2 =
ϕ1 ±

√
ϕ2
1 + 4ϕ2

2
.

Each of b1, b2 is acceptable in the solution Abt.
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Three possible situations may be encountered in regard to the characteristic

roots, depending on d.

Case 1 (distinct real roots: d > 0, i.e., a21 + 4a2 > 0), b1, b2 are real and

distinct,

b1, b2 =
a1 ±

√
a21 + 4a2
2

,

yht = A1b
t
1 +A2b

t
2,

ypt =
c

1− a1 − a2
or

c

2− a1
t or

c

2
t2,

yt =


yht + ypt = A1b

t
1 +A2b

t
2 +

c
1−a1−a2

, a1 + a2 ̸= 1;

yht + ypt = A1b
t
1 +A2b

t
2 +

c
2−a1

t, a1 + a2 = 1, a1 ̸= 2;

yht + ypt = A1b
t
1 +A2b

t
2 +

c
2 t

2, a1 + a2 = 1, a1 = 2.

Suppose given y0 and y1. Then we can find out A1 and A2 by letting

t = 0, 1.
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Case 2 (repeated real roots: d = 0, i.e., a21 + 4a2 = 0)

b = b1 = b2 = a1/2,

A1b
t
1 +A2b

t
2 = (A1 +A2)b

t ≡ A3b
t → short of one constant,

yht = A3b
t +A4tb

t.

Given two initial conditions, A3 and A4 can again be assigned definite values.

Case 3 (complex roots: d < 0, i.e., a21 + 4a2 < 0) The characteristic roots

which are conjugate complex will be in the form

b1, b2 =
a1
2
±
√
−(a21 + 4a2)i

2
≡ h± vi,

yht = A1b
t
1 +A2b

t
2

= A1(h+ vi)t +A2(h− vi)t

= A1R
t(cos θt+ i sin θt) +A2R

t(cos θt− i sin θt)

= Rt[(A1 +A2) cos θt+ (A1 −A2)i sin θt]

≡ Rt(A5 cos θt+A6 sin θt).
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Cont’d: De Moivre’s theorem

Hamilton (1994, p.14)

b1 = h+ vi = Reiθ = R(cos θ + i sin θ),

b2 = h− vi = Re−iθ = R(cos θ − i sin θ);

bp1 = (h+ vi)p = Rpeiθp = Rp[cos(θp) + i sin(θp)],

bp2 = (h− vi)p = Rpe−iθp = Rp[cos(θp)− i sin(θp)];

bt1, b
t
2 = (h± vi)t = Rt(cos θt± i sin θt), ← see Hamilton (1994, p.708)

where R =
√
h2 + v2 =

√
a21 − (a21 + 4a2)

4
=
√
−a2,

cos θ =
h

R
=

a1
2
√
−a2

and sin θ =
v

R
=

√
1 +

a21
4a2

.
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Cont’d: The convergence of the time path

As in the case of 1st-order DEs, the convergence of the time path yt hinges

solely on whether yht tends toward 0 as t→∞. The various configurations of

bt is still applicable, however, we shall have to consider 2 characterics roots

b1, b2 with A1, A2(d > 0);A3, A4(d = 0);A5, A6(d < 0) rather than only b.

Case 1. The role of b (1st-order DEs) and b1, b2 (2nd-order DEs)

Case 2. The role of A (1st-order DEs) and A1 −A6 (2nd-order DEs)

(1) d > 0, b1 ̸= b2 → yht = A1b
t
1 +A2b

t
2 (Assume A1, A2 = 1)

The time path of bt1, b
t
2(b1, b2 ̸= 0) will be

Convergent

Divergent

}
if

{
|b1| < 1, |b2| < 1; |b1| > 1, |b2| < 1 if |b2| > |b1|;
|b1| > 1, |b2| > 1; |b1| > 1, |b2| < 1 if |b1| < |b2|.

Note that even though the eventual convergence depends on the dominant

root (with the higher absolute value) alone, the nondominant root will exert

a definite influence on the time path, too, at least in the beginning periods.

Therefore, the exact configuration of yt is still dependent on both roots.
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(2) d = 0, b1 = b2 = b→ yht = A3b
t +A4tb

t (Assume A3, A4 = 1)

The time path of bt(b ̸= 0) will be

Convergent

Divergent

}
if

{
|b| < 1;

|b| > 1.

If |b| > 1, the t part will simply serve to intensify the explossiveness as t

increases; If |b| < 1, the t part will run counter to each other, but the

damping force of bt will always win over the exploding force of t.

(3) d < 0, b1 ̸= b2 → yht = Rt(A5 cos θt+A6 sin θt) (Assume A5, A6 = 1)

As far as convergence is concerned, the decisive factor is really the Rt term,

wich will dictate whether the stepped fluctuation is to be intensified or

mitigated as t increases. In the present case, the fluctuation can be gradually

narrowed down if and only if (iff) R < 1. Since R is by definition the absolute

value of the conjugate complex roots (h± vi), the condition for convergence

is again that the characteristic roots be less than unity in absolute value.
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Figure: The Time Path of y for the Complex-Root Case

To summarize: For all three cases of characteristic roots, the time path will

converge to a (stationary or moving) intertemporal equilibrium

(ypt )—regardless of what the initial conditions may happen to be—iff the

absolute value of every root is less than 1.

Source: Chiang (2005, p.575)
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Solving pth-order linear DEs

A pth-order linear DE with constant coefficients and constant term may be

written as

yt+p = a1yt+p−1 + · · ·+ ap−1yt+1 + apyt + c;

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + wt Chiang p.586, variable-term and higher-order

The particular solution ypt = k or ypt = kt or ypt = kt2, etc., try in that order.
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yht corresponding to the homogeneous function

yt+p = a1yt+p−1 + · · ·+ ap−1yt+1 + apyt;

yt = ϕ1yt−1 + · · ·+ ϕpyt−p.

yt = ypt + yht .

Try a solution of the form yht = Abt, thus

Abt+p − a1Ab
t+p−1 + · · · − ap−1Abt+1 − apAbt = 0,

Aλt − ϕ1Aλ
t−1 − · · · − ϕpAλt−p = 0.

divided by Abt

========⇒ bp − a1b
p−1 − · · · − ap−1b− ap = 0← a characteristic equation,

⇒ characteristic roots b1, b2, . . . , bp = bi(i = 1, 2, . . . , p) =?

divided by Aλt−p

==========⇒ λp − ϕ1λ
p−1 − · · · − ϕp−1λ− ϕp = 0← a characteristic equation,

⇒ characteristic roots λ1, λ2, . . . , λp = λi(i = 1, 2, . . . , p) =?
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all of which should enter into the solution to the homogeneous function (i.e.,

the complementary function) thus:

Case 1 (distinct real roots)

yht =

p∑
i=1

Aib
t
i.

Case 2 (repeated real roots)

yht = A1b
t
1 +A2b

t
2 + · · ·+Apb

t
p = (A1 +A2 + · · ·+Ap)b

t = Ap+1b
t → short of p− 1 constants

yht = Ap+1b
t +Ap+2tb

t +Ap+3t
2bt + · · ·+A2pt

p−1bt.

Case 3 (complex roots) If there is a pair of conjugate complex roots (say,

bp−1, bp) then the last two terms in the sum are to be combined into the

expression

Rt(A2p+1 cos θt+A2p+2 sin θt).

A similar expression can also be assigned to any other pair of complex roots.

In case of two repeated pairs of complex roots, however, one of the two must

be given a multiplicative factor of tRt instead of Rt.
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Cont’d: The Schur theorem and convergence

Recall that the time path can converge iff every root of the characteristic eq.

is less than 1 in absolute value. In view of this, the Schur theorem becomes

directly applicable: The roots of the pth-degree polynomial eq. (i.e., the

characteristic eq.) will al be less than unity in absolute value iff the following

p determinants are all positive,

Figure: The p (or “n” in the book) determinants

Source: Chiang (2005, p.590). For a discussion of this theorm and its history, see Chipman (1951, p.119)
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Samuelson (1939, RES)

Paul A. Samuelson, “Interactions between the Multiplier Analysis and the

Principle Acceleration,” Review of Economic Statistics, May 1939, pp.75-78.

(Chiang, 2005, p.576)

A 1st-order DE

{
Yt = Ct +G0,

Ct = αYt−1 α ∈ (0, 1).

A 2nd-order DE


Yt = Ct + It +G0,

Ct = αYt−1 α ∈ (0, 1),

It = β(Ct − Ct−1) β ∈ (0,∞),

⇒ It = β(αYt−1 − αYt−2) = αβ(Yt−1 − Yt−2),

⇒ Yt = αYt−1 + αβ(Yt−1 − Yt−2) +G0,

⇒ Yt = (α+ αβ)Yt−1 − αβYt−2 +G0,

⇒ Yt+2 = (α+ αβ)Yt+1 − αβYt +G0.

This is a 2nd-order linear DE with constant coefficients and constant term.
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Cont’d: The particular solution

Try Y p
t = k

k − α(1 + β)k + αβk = G0,

⇒ Y p
t = k =

G0

1− α− αβ + αβ
=

G0

1− α
, α ∈ (0, 1)

The G0

1−α should give us the equilibrium income Y ∗ in the sense that this

income level satisfies the equilibrium condition (national income = total

expenditure). Being the particular solution of the model, it also give us the

intertemporal equilibrium income Y ∗
t .
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Cont’d: The homogeneous solution

Resort to the complementary function

Yt+2 − (α+ αβ)Yt+1 + αβYt = 0.

Try Y h
t = Abt

Abt+2 − (α+ αβ)Abt+1 + αβAbt = 0.

Divide by Abt

b2 − (α+ αβ)b+ αβ = 0.

Characteristic roots

b1, b2 =
(α+ αβ)±

√
(α+ αβ)2 − 4αβ

2
.

The discriminant

d =
√
(α+ αβ)2 − 4αβ.

Case 1 d > 0

Case 2 d = 0

Case 3 d < 0

 stable conditions−−−−−−−−−→ |b1|, |b2| < 1→ α, β → αβ < 1.

47/88



Cont’d: Case 1

b1 + b2 = α+ αβ > 0

b1b2 = αβ > 0

}
⇒ b1, b2 > 0.

⇒ (1− b1)(1− b2) = 1− (b1 + b2) + b1b2

= 1− (α+ αβ) + αβ

= 1− α.

α∈(0,1)
=====⇒ 0 < (1− b1)(1− b2) < 1.

b1, b2 > 0

0 < (1− b1)(1− b2) < 1

}
⇒



(i) 0 < b2 < b1 < 1 ⇒
(ii) 0 < b2 < b1 = 1 ⇒
(iii) 0 < b2 < 1 < b1 ⇒
(iv) 1 = b2 < b1 ⇒
(v) 1 < b2 < b2 ⇒
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Cont’d: Case 2 and 3

The roots are now

b1 = b2 = b =
α+ αβ

2
.

b > 0

0 < (1− b)2 < 1

}
⇒


(vi) b < 1 ⇒
(vii) b = 1 ⇒
(viii) b > 1 ⇒

With complex roots, we have stepped fluctuation, and hence endogenous

business cycles.

R =
√
αβ ⇒


(ix) R < 1 ⇒
(x) R = 1 ⇒
(xi) R > 1 ⇒
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Figure: Cases and Subcases of the Samuelson Model

Notice that we have used different symbols in the slides.

Source: Chiang (2005, p.579)
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Figure: Cases and Subcases of the Samuelson Model

Source: Chiang (2005, p.577)
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Solution by iteration (recursive substitution)

Cumbersome and time-intensive but intuitive. Our dynamic problem is to

find a time path from some given pattern of change of a variable y over time.

yt = ϕyt−1 + ϵt,

yt = c+ ϵt + θϵt−1, MA(1)

yt = c+ ϕyt−1 + ϵt, AR(1)

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ϵt, AR(2)

yt = c+ ϕ1yt−1 + ϕ2yt−2 + ϵt + θ1ϵt−1 + θ2ϵt−2, ARMA(2, 2)

...

The form of the variable term ϵt (i.e., forcing process) can be very general:

it can be any function of time, current and lagged values of other variables,

and/or stochastic disturbances.
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Case 1. Iteration with an initial condition (y0)

Data Equation

0 y0 given

1 y1 = ϕy0 + ϵ1
...

...

t yt = ϕyt−1 + ϵt

y2 = ϕy1 + ϵ2,

= ϕ(ϕy0 + ϵ1) + ϵ2,

= ϕ2y0 + ϕϵ1 + ϵ2;

y3 = ϕy2 + ϵ3

= ϕ(ϕ2y0 + ϕϵ1 + ϵ2) + ϵ3,

= ϕ3y0 + ϕ2ϵ1 + ϕϵ2 + ϵ3.

yt = ϕty0 +
∑

ϕiϵt−i, i = 0, 1 . . . , t− 1.
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Case 2. Iteration without an initial condition (y0)

Table: The dynamic equation governs the behavior of y for all t

Data Equation

0 y0 = ϕy−1 + ϵ0
1 y1 = ϕy0 + ϵ1
...

...

t yt = ϕyt−1 + ϵt

y0 = given ϵ0 and y−1, y1 = given ϵ1,

y2 = given ϵ2,

...

yt = ϕt+1y−1 + ϕtϵ0 + ϕt−1ϵ1 + ϕt−2ϵ2 + · · ·+ ϕϵt−1 + ϵt,

= ϕt+1y−1 +

t∑
i=0

ϕiϵt−i
another p periods

= ϕt+p+1y−p−1 +

t+p∑
i=0

ϕiϵt−i.
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Cont’d: Dynamic multipliers

Q: What are the effects on y of changes in the value of ϵt given the dynamic

system:

yt+h = ϕh+1yt−1 + ϕhϵt + ϕh−1ϵt+1 + ϕh−2ϵt+2 + · · ·+ ϕϵt+h−1 + ϵt+h,

= ϕh+1yt−1 +

h∑
i=0

ϕh−iϵt+i
|ϕ|<1
= 0 +

∞∑
i=0

ϕh−iϵt+i = Aϕt+h +

∞∑
i=0

ϕh−iϵt+i.

ϕt =
∂yt
∂ϵ0

⇐⇒ ∂yt+h

∂ϵt
= ϕh. cf. Enders(2015, p.11)
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Cont’d: An example

Goldfeld (1973) estimated money demand fucntion for the USA.

mt = 0.27 + 0.72mt−1 + 0.19It − 0.045rbt − 0.019rct;

mt︸︷︷︸
yt

= 0.72mt−1︸ ︷︷ ︸
ϕyt−1

+0.27 + 0.19It − 0.045rbt − 0.019rct︸ ︷︷ ︸
ϵt

.

Suppose we want to know what will happen to money demand two quarters

from now if current income It were to increase by one unit dotay with future

income It+1 and It+2 unaffected (with an initial condition yt−1):

yt+2 = ϕ3yt−1 + ϕ2ϵt + ϕϵt+1 + ϵt+2.

∂mt+2

∂It
=

∂mt+2

∂ϵt
× ∂ϵt

∂It
= ϕ2 × ∂ϵt

∂It
= (0.72)2(0.19) = 0.098.

Thus, an increase in income It of 1% units will result an increase in money

holdings mt of 0.1% units which derive from

(0.01)× (0.098) = 0.001.
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Cont’d: Tips

Xt −Xt−1

Xt−1
=

Xt

Xt−1
− 1 ⇒

Xt

Xt−1
= 1 +

Xt −Xt−1

Xt−1
⇒

ln

(
Xt

Xt−1

)
= ln

(
1 +

Xt −Xt−1

Xt−1

)
≈ Xt −Xt−1

Xt−1
⇒

lnXt − lnXt−1 =
Xt −Xt−1

Xt−1
;

d lnX(t) =
dX(t)

X(t)
;

x̂t ≡ xt − x ≡ lnXt − lnX ≈ lnX +
1

X
(Xt −X)− lnX =

Xt −X

X
.
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Reconciling the two iterative methods:

yt = Aϕt +

∞∑
i=0

ϕiϵt−i without an initial condition

y0 = A+

∞∑
i=0

ϕiϵ−i ⇒ A = y0 −
∞∑
i=0

ϕiϵ−i y0 given

⇒ yt =

(
y0 −

∞∑
i=0

ϕiϵ−i

)
ϕt +

∞∑
i=0

ϕiϵt−i

= ϕty0 −
∞∑
i=0

ϕt+iϵ−i +

∞∑
i=0

ϕiϵt−i

= ϕty0 +

t−1∑
i=0

ϕiϵt−i.

If |ϕ| > 1, p→∞ ⇒ |ϕ|t+p →∞. However, if there is an initial

condition, there is no need to obtain the infinite summation. Still,

yt = ϕty0 +
∑

ϕiϵt−i, i = 0, · · · , t− 1.
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Cont’d: ϕ = 1

The random walk model (ϕ = 1 ⇒ yt = yt−1 + ϵt)

y0 = given,

y1 = y0 + ϵ1,

y2 = (y0 + ϵ1) + ϵ2 = y0 + (ϵ1 + ϵ2),

y3 = [(y0 + ϵ1) + ϵ2] + ϵ3 = y0 + (ϵ1 + ϵ2 + ϵ3),

...

yt = y0 +

t∑
i=1

ϵi vs. yt =

∞∑
i=0

ϕiϵt−i

Notice that the solution contains summation of all disturbances from

ϵ1 → ϵt. Thus, when ϕ = 1, each disturbance (ϵi) has a permanent

non-decaying effect on the value of yt.

We should compare the case (without an initial condition but the period

p→∞) where |ϕ| < 1, |ϕ|t is a decreasing function of t so that the effects

of past disturbances become successively smaller over time.
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Cont’d: The magnitude of ϕ

Figure: Convergent and Nonconvergent Sequences of yt = ϕt × 1 +
∑30

i=0 ϕ
iϵt−i

Source: Enders (2015, p.13)
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An alternative solution methodology

The general solution (yt) = All homogeneous solutions (yht ) + a particular

solution (ypt ).

Consider only the homogeneous portion of the first-order equation

yt − ϕyt−1 = 0
the homogeneous solution
================ yht = Aϕty0 or yht = yt−1 = · · · = 0.

Once the general solution is obtained, the arbitrary constant A can be

eliminated by imposing an initial condition for y0.

STEP 1: find all p homogeneous solutions;

STEP 2: find a particular solution;

STEP 3: obtain the general solution;

STEP 4: eleminate A.
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Cont’d: Generalizing the method

Consider the homogeneous part of a p-th order equation yt =
∑p

i=1 ϕiyt−i,

⇒ yht =

p∑
i=1

ϕiy
h
t−i also Ayht =

p∑
i=1

ϕi(Ayht−i) and also A1y
h
1t +A2y

h
2t.

A1y
h
1t +A2y

h
2t = ϕ1(A1y

h
1t−1 +A2y

h
2t−1) + ϕ2(A1y

h
1t−2 +A2y

h
2t−2)+

· · ·+ ϕp(A1y
h
1t−p +A2y

h
2t−p),

⇒ (A1y
h
1t −

p∑
i=1

A1ϕiy
h
1t−i) + (A2y

h
2t −

p∑
i=1

A2ϕiy
h
2t−i)

?
= 0.

Since A1y
h
1t and A2y

h
2t are separate solution to yt =

∑p
i=1 ϕiyt−i ⇒0+0=0.

ypt + yht =

p∑
i=1

ϕi(y
p
t−i + yht−i) + xt,

⇒ (ypt −
p∑

i=1

ϕiy
p
t−i − xt) + (yht −

p∑
i=1

ϕiy
h
t−i)

?
= 0.

Since ypt solves the general equation and since yht solves the homogeneous

equation ⇒ 0+0=0.
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Homogeneous solutions to DEs with constant coefficients

(1) The 2nd-order systems

yt − ϕ1yt−1 − ϕ2yt−2 = 0.

Suspect that the homogeneous solutions has the form yht = Aλt,

Aλt − ϕ1Aλ
t−1 − ϕ2Aλt−2 = 0,

divide by Aλt−2

−→ λ2 − ϕ1λ− ϕ2 = 0← the characteristic equation,

⇒ the characteristic roots λ1, λ2 =
ϕ1 ±

√
ϕ2
1 + 4ϕ2

2
≡ ϕ1 ±

√
d

2

⇒ all homogeneous solutions yht = A1λ
t
1 +A2λ

t
2.

yht = A1λ
t
1 +A2λ

t
2, d > 0;

yht = A1

(
ϕ1

2

)t
+A2t

(
ϕ1

2

)t
, d = 0; where |ϕ1| > 2 or |ϕ1| < 2.

yht = A1r
t cos(θt+A2), d < 0; where r =

√
−ϕ2 cos θ = ϕ1

2
√
−ϕ2

.
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Cont’d: d > 0

Figure: Example 1: |λ1|, |λ2| < 1 vs. Example 2: |λ1| > 1, |λ2| < 1

Source: Enders (2015, p.24)
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Cont’d: d = 0

Figure: The homogeneous solution t
(
ϕ1
2

)t
Source: Enders (2015, p.26)
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Cont’d: d < 0

Enders (2015, p. 26-27 & appendix 1.1);

Hamilton (1994, p.14)
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Cont’d: Stability condition

Figure: Summary of dynamics for a 2nd-order DE

Source: Hamilton (1994, p.17)
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Figure: Characterizing the Stability Conditions

Source: Enders (2015, p.29)
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The general stability conditions can be summarized using triangle ABC in

above figure (a1 ≡ ϕ1, a2 ≡ ϕ2; d = ϕ2
1 + 4ϕ2 = 0):

Arc AOB (d = 0) is the boundary between cases 1 (d > 0) and case 3

(d < 0); The region above AOB corresponds to case 1 (d > 0);

The region blow AOB corresponds to case 3 (d < 0).

In case 1 (d > 0 in which the roots are real and distint), stability requires

λ1 =
ϕ1 +

√
ϕ2
1 + 4ϕ2

2
< 1, λ2 =

ϕ1 −
√
ϕ2
1 + 4ϕ2

2
> −1,

⇒
√
ϕ2
1 + 4ϕ2 < 2− ϕ1, ⇒ ϕ1 −

√
ϕ2
1 + 4ϕ2 > −2,

⇒ ϕ2
1 + 4ϕ2 < 4− 4ϕ1 + ϕ2

1, ⇒
√

ϕ2
1 + 4ϕ2 < ϕ1 + 2,

⇒ ϕ1 + ϕ2 < 1. ⇒ ϕ2 < 1 + ϕ1.

Thus, the region of stability in case 1 (d > 0) consists of all points in the

region bounded by AOBC;
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In case 2 (d = 0 in which the roots are repeated), stability requires

|ϕ1| < 2.

Thus, the region of stability in case 2 (d = 0) consists of all points on arc

AOB;

In case 3 (d < 0), stability requires

r =
√
−ϕ2 < 1 ⇒ −ϕ2 < 1 where ϕ2 < 0.

Thus, the region of stability in case 3 (d < 0) consists of all points in region

AOB.

A succinct way to characterize the stability conditions is to state that the

characteristic roots (λ1, λ2) must lie within the unit circle.

If a1 ≡ ϕ1 > 0, the roots α1 ≡ λ1 = ϕ1+i
√
d

2 and α2 ≡ λ2 = ϕ1−i
√
d

2 can be

represented by the two points in the following figure.
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Figure: Characterizing the Stability Conditions

r =

√√√√(ϕ1

2

)2

+

(
i
√
d

2

)2

=

√√√√(ϕ1

2

)2

−

(√
d

2

)2

=

√
ϕ2
1

4
− ϕ2

1 + 4ϕ2

4
=
√

−ϕ2.

Source: Enders (2015, p.30)
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Cont’d: An example

yt = 0.9yt−1 − 0.2yt−2 + 3,

⇒ yt − 0.9yt−1 + 0.2yt−2 = 0, the homogeneous portion

⇒ yh1t = 0.5t, yh2t = 0.4t, all homogeneous solutions

⇒ ypt = 10, a particular solution

⇒ yt = A10.5
t +A20.4

t + 10, the general solution

→ A1 = 1 & A2 = 2 ⇐ y0 = 13 & y1 = 11.3,

⇒ yt = 0.5t + 2 · 0.4t + 10.

We can substitute the solution into the 2nd-order equation to verify that it is

correct.
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(2) The pth-order systems yt −
∑p

i=1 ϕiyt−i = 0.

Suspect each homogeneous solution to have the form yht = Aλt.

To find the value(s) of λ, we seek the solution for

Aλt −
p∑

i=1

ϕiAλt−i = 0,

divide by Aλt−p

−→ λp − ϕ1λ
p−1 − ϕ2λ

p−2 − · · · − ϕp = 0,

yht = A1λ
t
1 +A2λ

t
2 + · · ·+Apλ

t
p.

Stability requires that all real valued |λi| < 1.

Some rules for checking the stability conditions (i.e., all characteristic roots

lie inside the unit circle) in higher order systems:

a necessary condition:
∑p

i=1 ϕi < 1.

a sufficient condition:
∑p

i=1 |ϕi| < 1.

at least one of {λi} = 1 if
∑p

i=1 ϕi = 1 ⇒ a unit root process.
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Particular solutions to DEs with a variable term

The pth-order system

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt.

The appropriate technique depends heavily on the form of the {ϵt} process.

Case 1: {ϵt} contain only deterministic components.

Case 2: {ϵt} contain only stochastic components.

Case 3: {ϵt} contain both deterministic and stochastic components.

Refer the reader to Chiang (2005, 4th ed., pp.586-588) and Enders (2015,

pp.32-34).
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Cont’d: Case 1

Deterministic processes

(1) ϵt = 0

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p.

Note that this is not a homogeneous equation since c ̸= 0. The trial solution

ypt = k, thus

ypt = k =
c

1− ϕ1 − ϕ2 − · · · − ϕp
, 1− ϕ1 − ϕ2 − · · · − ϕp ̸= 0.

Try the solution ypt = kt when 1− ϕ1 − ϕ2 − · · · − ϕp = 0,

kt = c+ ϕ1k(t− 1) + ϕ2k(t− 2) + · · ·+ ϕpk(t− p),

(1− ϕ1 − ϕ2 − · · · − ϕp)kt = c− k(ϕ1 + 2ϕ2 + 3ϕ3 + · · ·+ pϕp),

⇒ 0 = c− k(ϕ1 + 2ϕ2 + 3ϕ3 + · · ·+ pϕp),

⇒ k =
c

ϕ1 + 2ϕ2 + 3ϕ3 + · · ·+ pϕp
.

In the event that the solution kt fails, sequentially try the solutions

ypt = kt2, kt3, . . . , ktp.
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(2) ϵt = abϕ0t (in a growth context) where a, b, and ϕ0 are constants, e.g.,

yt = c+ ϕ1yt−1 + abϕ0t.

Try a slotuion of the form ypt = k0 + k1b
ϕ0t, where k0 and k1 are constants.

k0 + k1b
ϕ0t = c+ ϕ1(k0 + k1b

ϕ0(t−1)) + abϕ0t,

k0 − c− ϕ1k0 = ϕ1k1b
ϕ0(t−1) + abϕ0t − k1b

ϕ0t,

0 = 0,

⇒ k0 =
c

1− ϕ1
and k1 =

abϕ0t

bϕ0t − ϕ1bϕ0(t−1)
=

abϕ0

bϕ0 − ϕ1
,

⇒ ypt = k0 + k1b
ϕ0t =

c

1− ϕ1
+

abϕ0

bϕ0 − ϕ1
bϕ0t,

⇒ ypt → k0 =
c

1− ϕ1
⇐ |bϕ0 | < 1.

Note that we would try another solution k0 = kt when ϕ1 = 1 and k1 = at

when ϕ1 = bϕ0 .
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(3) ϵt = atϕ0 (deterministic time trend) where a is a constant and ϕ0 is a

positive integer. Hence

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + atϕ0 .

Try a solution of the form ypt = k0 + k1t+ k2t
2 + · · ·+ kϕ0

tϕ0 . To find the

value of each ki, substitute the particular solution into the above equation.

Then select the value of each ci that results in an identity. Although various

values of ϕ0 are possible, in economic applications it is common to see

models incorporating a linear time trend (ϕ0 = 1). Consider an example

yt = c+ ϕ1yt−1 + ϕ2yt−2 + at.

Posit the solution ypt = k0 + k1t where k0 and k1 are undetermined

coefficients. Substitute to yield ( if ϕ1 + ϕ2 ̸= 1)

k0 + k1t = c+ ϕ1[k0 + k1(t− 1)] + ϕ2[k0 + k1(t− 2)] + at,

k1t− ϕ1k1t− ϕ2k1t− at = c+ ϕ1k0 − ϕ1k1 + ϕ2k0 − 2ϕ2k1 − k0,

⇒ k1 =
a

1− ϕ1 − ϕ2
and k0 =

c

1− ϕ1 − ϕ2
− a

(1− ϕ1 − ϕ2)2
(ϕ1 + 2ϕ2).
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Cont’d: Case 2

Finding particular solutions when there are stochastic components in the

{yt} process by the method of undetermined coefficients. The key insight of

the method is that linear equations have linear solutions.

Hence, the particular solution to a linear DE is necessarily linear. Moreover,

the solution can depend only on time, a constant, and the elements of the

forcing process {ϵt}.

To begin, reconsider the 1st-order equation AR(1):

yt = c+ ϕ1yt−1 + ϵt.

Posit the particular soution (also be named as the challenge solution):

ypt = k0 + k1t+

∞∑
i=0

xiϵt−i,

where k0, k1, and all the xi are the coefficients to be determined.
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Substitute it into the original DE to form

yt = c+ ϕ1yt−1 + ϵt,

⇒ k0 + k1t+ x0ϵt + x1ϵt−1 + x2ϵt−2 + · · ·
= c+ ϕ1[k0 + k1(t− 1) + x0ϵt−1 + x1ϵt−2 + x2ϵt−3 + · · · ] + ϵt,

⇒ (k0 − c− ϕ1k0 + ϕ1k1) + (k1 − ϕ1k1)t

+(x0 − 1)ϵt + (x1 − ϕ1x0)ϵt−1 + (x2 − ϕ1x1)ϵt−2 + (x3 − ϕ1x2)ϵt−3 + · · · = 0,

⇒



k0 − c− ϕ1k0 + ϕ1k1 = 0 ⇒ k0 = c
1−ϕ1

,

k1 − ϕ1k1 = 0
ϕ1 ̸=1
===⇒ k1 = 0 ⇑,

x0 − 1 = 0 ⇒ x0 = 1,

x1 − ϕ1x0 = 0 ⇒ x1 = ϕ1,

x2 − ϕ1x1 = 0 ⇒ x2 = ϕ2
1,

x3 − ϕ1x2 = 0 ⇒ x2 = ϕ3
1,

...

xi − ϕ1xi−1 = 0 ⇒ xi = ϕi
1.
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For this case, the particular solution is

ypt =
c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵt−i.

Compare this method to the method of iteration

y0 = c+ ϕ1y−1 + ϵ0, y1 = c+ ϕ1y0 + ϵ1,

y2 = c+ ϕ1(c+ ϕ1y0 + ϵ1) + ϵ2 = c+ cϕ1 + ϕ2
1y0 + ϕ1ϵ1 + ϵ2,

yt = c
t−1∑
i=0

ϕi
1 + ϕt

1y0 +
t−1∑
i=0

ϕi
1ϵt−i,

= c

t−1∑
i=0

ϕi
1 + ϕt

1(c+ ϕ1y−1 + ϵ0) +

t−1∑
i=0

ϕi
1ϵt−i

= c

t∑
i=0

ϕi
1 + ϕt+1

1 y−1 +

t∑
i=0

ϕi
1ϵt−i

= c

t+p∑
i=0

ϕi
1 + ϕt+p+1

1 y−p−1 +

t+p∑
i=0

ϕi
1ϵt−i

p→∞
=====

c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵt−i.
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The general solution yt = ypt + yht , where yht = Aϕt
1:

yt =
c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵt−i +Aϕt

1.

If we have an initial condition for y0, it follows that

y0 =
c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵ−i +A,

⇒ A = y0 −
c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵ−i.

⇒ yt =
c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵt−i +

(
y0 −

c

1− ϕ1
+

∞∑
i=0

ϕi
1ϵ−i

)
ϕt
1

=
c

1− ϕ1
+

( ∞∑
i=0

ϕi
1ϵt−i + ϕt

1

∞∑
i=0

ϕi
1ϵ−i

)
+

(
y0 −

c

1− ϕ1

)
ϕt
1

=
c

1− ϕ1
+

t−1∑
i=0

ϕi
1ϵt−i +

(
y0 −

c

1− ϕ1

)
ϕt
1, ϕ1 ̸= 1.
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Instead if ϕ1 = 1 (or |ϕ1 > 1| “nonconcergent sequences”, see Enders, 2005,

pp. 12, 36), k0 can be any arbitrary constant and k1 = c. The improper

form of the particular solution is (xi = ϕi
1 will explode when |ϕ1| > 1)

ypt = k0 + k1t+

∞∑
i=0

xiϵt−i → ypt = k0 + ct+

∞∑
i=0

ϵt−i.

The form of the solution is “improper” because
∑∞

i=0 ϵt−i may be infinite.

Therefore, it’s necessary to impose an initial condition (y0 given) to yield

y0 = k0 +

∞∑
i=0

ϵ−i ⇒ k0 = y0 −
∞∑
i=0

ϵ−i,

⇒ yt =

(
y0 −

∞∑
i=0

ϵ−i

)
+ ct+

∞∑
i=0

ϵt−i

= y0 + ct+

( ∞∑
i=0

ϵt−i −
∞∑
i=0

ϵ−i

)
= y0 + ct+

∑
ϵi, i = 1, 2, . . . , t.
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Cont’d: Another example

AR(1) → ARMA(1, 1):

Yt = c+ ϕ1Yt−1 + ϵt + θ1ϵt−1.

Posit the challenge solution and substitute it into the original equation to

yield

Y p
t = k0 + k1t+

∞∑
i=0

xiϵt−i,

⇒ k0 + k1t+

∞∑
i=0

xiϵt−i = c+ ϕ1[k0 + k1(t− 1) +

∞∑
i=0

xiϵt−1−i] + ϵt + θ1ϵt−1

Matching coefficients of intercept terms, coefficients of terms containing t,

and coefficients on all terms containing ϵt, ϵt−1, ϵt−2, . . . yields · · ·

If ϕ1 ̸= 1,

If ϕ1 = 1,
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AR(1) → ARMA(1, 1) → AR(2)

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + ϵt.

Since it’s a 2nd-order equation, we use the challenge solution

Yt = k0 + k1t+ k2t
2 +

∞∑
i=0

xiϵt−i,

where k0, k1, k2, and the xi are the undetermined coefficients.

Substituting it into the original equation yields · · ·

We will continue to talk about ARMA(1, 1) and AR(2) in Lecture 2.

85/88



Cont’d: Case 3

See some examples using dynare codes.
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Contents

Stay at Lecture 1,

but turn to Hamilton (1994, ch.1-2).

Chapter 2 Lag Operators;

Chapter 1 Matrix Operations.
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