
Lecture Notes 2: Neoclassical Growth Theory:

Ramsey-Cass-Koopmans Model

Zhiwei Xu (xuzhiwei@sjtu.edu.cn)

The Solow model does not consider individual optimal decisions. The model’s dynamic struc-

ture is simply introduced by capital accumulation rule. The consumption rule is exogenously

given, as a result, the saving rate is exogenous and constant. In this lecture, we will investigate

the Ramsey-Cass-Koopmans model, in which the micro-level optimal behaviors are seriously mod-

eled. In particular, the saving rate is endogenously determined by the household optimization

decisions.

1 Model Setup

The economy has representative firms and households The market is competitive. There is only

one good, it can be used either for consumption or investment. The production technology is given

by

Yt = Kα
t (AtLt)

1−α , (1)

where Lt is the total labor input, Kt is physical capital, At is the exogenous technology, growing

at rate g > 0,

At = (1 + g)At−1. (2)

1.1 Firm’s Decision

Each period, from the market the representative firm hires labor Lt with the wage rate wt, and

rents capital Kt with the rental rate rt. The firm chooses Lt and Kt to maximize its profit

Πt = Yt − rtKt − wtLt. (3)

The demand of capital and labor are given by following optimal conditions

rt =
∂F (Kt, AtLt)

∂Kt

= αKα−1
t (AtLt)

1−α , (4)
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wt =
∂F (Kt, AtLt)

∂Lt
= (1− α)AtK

α
t (AtLt)

−α . (5)

As the production function is constant return to scale, we have

∂F (Kt, AtLt)

∂Kt

Kt +
∂F (Kt, AtLt)

∂Lt
Lt = Yt. (6)

Plugging factor demands (4) and (5) into last equation gives us

Yt = rtKt + wtLt, (7)

or Πt = 0. That is, the constant return to scale of production function implies zero profit.

1.2 Household’s Decision

The representative household is a big family, in which there are Nt members. Each individual

inelastically supplies one unit labor. Therefore, the total labor supply is Nt. The population Nt is

assumed to grow at the rate n

Nt = (1 + n)Nt−1. (8)

The representative household maximizes following life-time utility

U =
∞∑
t=0

ρt [Ntu (Ct)] , (9)

where Ct is the consumption of a family member, u(Ct) is the corresponding utility level, and ρ is

the discount rate for the future. In particular, the utility function is assumed to be u(C) = log ct.

The budget constraint for the household is given by

CtNt +Kt+1 − (1− δ)Kt = rtKt + wtNt. (10)

The optimization problem of representative household is to maximize (9) subject to (10).

1.3 Competitive Equilibrium

In the competitive equilibrium, the household and the firm achieve their individual optimum, and

each market clears. In particular, Nt = Lt. The budget constraint (10) and the input demands

(4) and (5) jointly imply the resource constraint is

CtLt +Kt+1 − (1− δ)Kt = Yt. (11)
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1.4 Dynamic System

Since there are two potential growth trends, to solve the model we need to first transform the econ-

omy to a stationary one. Define the detrended variables as xt ≡ Xt
AtLt

, while for the consumption

of each individual, we define ct = Ct
At
. The life-time utility can be rewritten as

U =
∞∑
t=0

ρt
[
Nt
c1−θt A1−θ

t − 1

1− θ

]
=

∞∑
t=0

ρt
[
NtA

1−θ
t

c1−θt

1− θ

]
= N0

∞∑
t=0

βt log ct, (12)

where β = (1 + n) ρ. To guarantee that the utility function is not explosive, we need to assume

β < 1.1 Without loss of generality, we set A0 = N0 = 1. The budget constraint can be rewritten

as

ct + kt+1 (1 + n) (1 + g)− (1− δ) kt = f (kt) , (13)

where f (k) = kαt . The competitive equilibrium is equivalent to the solution of following social

planner’s optimization problem2

max
{ct,kt+1}

∞∑
t=0

βt log ct, (14)

subject to (13). Notice that in the above optimization problem, the capital stock kt is determined

in period t − 1, therefore kt is a predetermined variable (state variable) in period t. That is, in

each period t, the social planner takes kt as given and make optimal decisions for ct and kt+1.

Let λt denote the Lagrangian multiplier of (13). The social planner’s problem can be rewritten

as

L= max
{ct,kt+1}

∞∑
t=0

βt {log ct + λt [f (kt)− ct − kt+1 (1 + n) (1 + g) + (1− δ) kt]} . (15)

The first order condition for consumption ct is obtained by the condition ∂L
∂ct

= 0, or equivalently

1/ct = λt. (16)

1More rigoriously, to guarantee U is finite, we need the growth rate of βt
c1−θt

1−θ less than zero, or equivalently

(1− θ) ct−ct−1

ct−1
+ log β < 0. As in the steady state, ct−ct−1

ct−1
= 0, we have β < 1.

2According to the first fundamental theorem of welfare economics, if there are no market frictions, the competi-
tive equilibrium in the decentralized economy is equivalent to the optimal allocation derived from a social planner’s
optimization problem.
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The above condition indicates that the Lagrangian multiplier λt (or the shadow price) essentially

measures the marginal utility in period t.

The first order condition for capital stock kt+1 is obtained by the condition ∂L
∂kt+1

= 0, or

equivalently

λt =
β

(1 + n) (1 + g)
λt+1 [f ′ (kt+1) + (1− δ)] . (17)

The LHS in the last equation indicates the cost of increasing one unit of capital stock in next

period. Accumulating one more capital sacrifices one unit consumption in current period, which

derives λt units of utility. The RHS in the last equation measures the marginal benefit for one more

capital stock in next period. An extra unit of capital in the next period will produce f ′ (kt+1) units

of output and remains 1 − δ unit after the depreciation. The marginal return f ′ (kt+1) + (1− δ)
can be translated to the utility by multiplying λt+1. Since the marginal return happens in period

t+ 1, the discount factor β
(1+n)(1+g)

needs to be considered.

We have a full dynamic system, which consists of three equations: one resource constraint (13)

and two optimal conditions (16) and (17), to determines three unknowns {ct, kt+1, λt}.
Combining (16) and (17) yields

∆ct+1

ct
=

β

(1 + n) (1 + g)
[f ′ (kt+1) + (1− δ)]− 1. (18)

We can further write the resource constraint (13) as

∆kt+1 =
1

(1 + n) (1 + g)
{f (kt)− [(1 + n) (1 + g)− (1− δ)] kt − ct} . (19)

The dynamic system is fully described by the difference equation system (18) and (19). Note

that given any initial state (c0, k0), the system (18) and (19) only provide necessary conditions for

the optimal paths of {ct, kt}.

1.5 The Steady State and Phase Diagram

Before the discussion of dynamics, we first solve the steady state, where ct and kt are constant

over time, i.e., ∆ct = ∆kt = 0.

According to (18), when ∆ct = 0, the steady-state capital k∗ satisfies following equation

f ′ (k) =
(1 + n) (1 + g)

β
− (1− δ) . (20)
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Remember that f (k) = kα, we can further solve the steady state capital k∗ as

k∗ =

{
1

α

[
(1 + n) (1 + g)

β
− (1− δ)

]} 1
α−1

. (21)

The above result indicates that the capital stock, in the long run, is determined by the growth

rates of population and technology. This prediction is consistent with that in the Solow model.

Since f (k) = kα is a concave function. Therefore, f ′ (k) is decreasing in k. If kt > k∗, we have
β

(1+n)(1+g)
[f ′ (kt) + (1− δ)]− 1 < 0, or ∆ct < 0. If kt < k∗, we have ∆ct > 0.

According to (19), when ∆kt+1 = 0, the steady-state c∗ and k∗ satisfy following equation

c = f (k)− [(1 + n) (1 + g)− (1− δ)] k. (22)

which describes a hump-shaped curve in the (c, k) space. For those (c, k) above the curve, we have

∆kt < 0. And for those (c, k) below the curve, we have ∆kt > 0.

Note that (20) is the set of all combinations of (c, k) that ensure ∆ct = 0, and the (22) is

the set of all (c, k) that ensure ∆kt = 0. We call these two curves as the equilibrium locus. The

intersection of them is the steady state.

The phase diagram consists of four areas separated by the locus (20) and the locus (22).

Area I: ct ↑ and kt ↓ . Any c−k pair in this area indicates that capital stock is relatively high

and consumption is relatively low, thus according to (18) and (19), consumption will increase and

capital will decrease. The above dynamics imply that if the system starts from any point in this

area, consumption and capital will eventually diverge from the steady-state point (c∗, k∗).

Area II: ct ↓ and kt ↓ . Any c − k pair in this area indicates that both capital stock and

consumption are relatively high, thus according to (18) and (19), both of them will monotonically

decrease as long as (ct, kt) stays in this area. The above dynamics imply that in this area there exist

some c− k pairs as initial points, from which consumption and capital will eventually converge to

the steady-state point (c∗, k∗).

Area III: ct ↑ and kt ↑. The dynamics in this area is just opposite to those in Area II.

Area IV: ct ↓ and kt ↑. The dynamics in this area is just opposite to those in Area I.

According to the above dynamic analysis, there exists a unique path (solid line with arrows in

Figure 1) such that from any points in this path the system will eventually converge to the steady

state. We call this unique equilibrium path as the “saddle path”.3

3Technically speaking, the difference equation system (18) and (19) just describes the dynamics of ∆ct and ∆kt
instead of the levels of ct and kt. These two equations only provide necessary conditions for the optimal path of
{ct, kt}. To find out the optimal path, we need to check limt→∞ ct and limt→∞ kt according to the phase diagram.
The “saddle path” is the only path that ensures the sequences of ct and kt not diverge.
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Figure 1: Phase diagram for ct and kt
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1.6 Modified Golden Rule and Balanced Growth Path

Remember that the golden rule is defined as the steady-state (S-S) consumption at the maximum

level. From (22), the capital stock at implied by the golden rule, kGR, satisfies

f ′
(
kGR

)
= (1 + n) (1 + g)− (1− δ) . (23)

However, the optimal steady-state capital k∗ satisfies

f
′
(k∗) =

(1 + n) (1 + g)

β
− (1− δ) . (24)

Therefore, only if the discounting rate β = 1, the optimal S-S capital k∗ is identical to the golden

rule capital kGR. It is easy to see that if β < 1, kGR > k∗.4 Moreover, the S-S saving rate in the

Ramsey model is

s∗ = 1− c∗

y∗

= 1− f (k∗)− [(1 + n) (1 + g)− (1− δ)] k∗

f(k∗)

= [(1 + n) (1 + g)− (1− δ)] k∗

f(k∗)

=
(1 + n) (1 + g)− (1− δ)

(1 + n) (1 + g) /β − (1− δ)
α < α. (25)

Last equality is due to the fact that f ′(k∗)k∗

f(k∗)
= α and f

′
(k∗) = (1+n)(1+g)

β
− (1− δ). The optimal

S-S saving rate is less than the Golden-Rule saving rate if β < 1. The intuition is that keeping

the maximum consumption cGR at each period is not optimal because the household cares more

about current period than the future (β < 1). Therefore, starting at k = kGR (higher than k∗),

the household always has incentive to consume more than cGR in the current period.

2 Transitional Dynamics: Further Discussions

2.1 A Special Case

We now provide a more rigorous discussion on the model dynamics. To simplify the math, we

consider a special case where the capital is fully depreciated, i.e., δ = 1. The resource constraint

(13) can be simplified as

kt+1 =
1

(1 + n) (1 + g)
[f (kt)− ct] . (26)

4This is because f ′ (k) = αkα−1 decreases with k.
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And (18) can be rewritten as

∆ct+1

ct
=

β

(1 + n) (1 + g)
f ′ (kt+1)− 1. (27)

We employ guess-and-verify strategy to solve the model. In particular, we guess the optimal

capital decision is linear in income, i.e., kt+1 = sf (kt), where s is an unknown coefficient to be

determined. Then, from (26) we solve the consumption as

ct = [1− (1 + n) (1 + g) s] f (kt) . (28)

Now we need to pin down s. To do so, we replace ct in (27) with last equation and obtain

f (kt+1)

f (kt)
− 1 =

β

(1 + n) (1 + g)
f ′ (kt+1)− 1. (29)

Remember that f (k) = kα and f ′ (k) = αkα−1. We can solve kt+1 as

kt+1 =
αβ

(1 + n) (1 + g)
f (kt) . (30)

Last equation confirms the linear form of our initial guess of kt+1 and we immediately have s =
αβ

(1+n)(1+g)
. The optimal consumption ct follows

ct = (1− αβ) f (kt) . (31)

From the above analysis, we can see that the Ramsey model degenerates to the Solow model

when the depreciation rate is 1. So the transition dynamics in the Ramsey model replicate those

in the Solow model. Moreover, the consumption rate is 1−αβ, while in the Solow model under the

Golden rule, the consumption rate is 1−α. As we discussed before, the discount factor β < 1 gives

the household more incentive to consume in the current period, resulting in a higher consumption

rate comparing that in under the Golden rule.

2.2 Demand Shock

2.2.1 Unexpected Changes of β

So far, we have discussed how to obtain the saddle path, along which the economy will eventually

converge to the steady state (c∗, k∗). Given the fixed fundamental (no shocks, no changes of the

values of parameters), the saddle path is a unique path that solves the optimization problem.

Any initial (c0, k0) off the saddle path will eventually diverge, and the corresponding path is not

optimal to the economy.
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In this section, we will discuss the scenario that if there is an unexpected change of the

fundamental, what will the economy respond. To take a concrete example, we discuss the change

of the discounting rate β, which captures the demand shock. For a lower β, the consumer weights

current consumption more than that in the future. Therefore, a decrease in β corresponds to a

positive demand shock in current period.

Let’s consider a time-varying β. We label it as βt. We still use the special case of δ = 1

to analyze the dynamics. Suppose that in the period 0, the economy is at the old steady state:

(c∗, k∗). In the same period, there is a sudden permanent decrease in βt, i.e, βt = β if t = 0 and

βt = βnew for t = 1, 2, 3... You may take the change of βt as a surprise or an exogenous permanent

shock. We denote the new steady state as (c∗∗, k∗∗) . Under the new βnew (starting from period

t = 1) the dynamic system will be changed to

∆ct+1

ct
=

βnew

(1 + n) (1 + g)
f ′ (kt)− 1, (32)

∆kt+1 =
1

(1 + n) (1 + g)
[f (kt)− (1 + n) (1 + g) kt − ct] . (33)

The optimal path satisfies

kt+1 =
αβnew

(1 + n) (1 + g)
f (kt) . (34)

ct = (1− αβnew) f (kt) . (35)

To see the phase diagram, notice that the change of βt will shift the curve of ∆ct = 0 to the

left but keeps the curve ∆kt = 0 unchanged. Figure 2 illustrates the new phase diagram under

βnew.

Note that the k0 (= k∗) does not change in the period 0, because k is a predetermined (or

state) variable. Figure 4 illustrates the transition dynamics: A→ B → C. When the fundamental

changes, the consumption adjusts such that (c, k) will jump towards the new saddle path.5 Thus,

we call the variable ct as control variable or jump variable.

2.2.2 Expected Changes of β

Suppose that in the period 0, the economy is at the old steady state (c∗, k∗) . In the same period,

there is an announcement saying that there will be a permanent decrease in β starting from t = T .

That is, βt = βold when t < T, and βt = βnew, when t ≥ T . We denote the new steady state

as (c∗∗, k∗∗). To see how the economy responds to this news, we now solve the path through

guess-and-verify strategy. Since now βt is time varying, we guess kt+1 = stf (kt). Using the same

5In this case, the consumption immediately jumps to the saddle path, this is mainly due to the change of β is
unexpected and permanent.
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Figure 2: Transition dynamics under unexpected change of βt

trick in the previous discussion yields

ct = [1− (1 + n) (1 + g) st] f (kt) , (36)

kt+1 =
αβt

(1 + n) (1 + g)

1− (1 + n) (1 + g) st
1− (1 + n) (1 + g) st+1

f (kt) . (37)

Finally, to pin down st, we have

st =
αβt

(1 + n) (1 + g)

1− (1 + n) (1 + g) st
1− (1 + n) (1 + g) st+1

. (38)

Last equation provides a dynamic structure for the saving rate st. It takes a recursive rela-

tionship between st and st+1, i.e.,

st = g (st+1, βt) . (39)
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From this recursive structure, we can solve st by iterating last equation forwardly, i.e.,

st = g (g (st+2, βt+1) , βt) = g (g (g (st+3, βt+2) , βt+1) , βt) = .... (40)

You can image that eventually we will obtain a formula like6

st = h
(
βt, βt+1, βt+2, ..., lim

t→∞
βt; lim

t→∞
st

)
. (41)

The above equation provides a very important feature of the Ramsey model: when households

making their optimal saving decisions, they are forward looking. Therefore, any change about the

economic fundamental in the future (even though it does not happen right now) will affect the

economic behaviors in the current period. News shock matters for the economy!

Figure 3: Transition dynamics under expected change of βt

6To be more clear, we can linearize (38) around the steady state (1 + ρ) ŝt = β̂t + ρŝt+1, where ŝt = st−s
s ,

β̂t = βt−β
β , ρ = (1+n)(1+g)

1−αβ . Iterating the equation forwardly, we eventually have ŝt =
∑
j

(
ρ

1+ρ

)j
β̂t+j .
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Figure 3 illustrates the transition dynamics under an expected decrease in βt. It shows that

even though the change of βt will occur in the future, the optimal transition for the economy is to

jump in the initial period (remember that the β is still unchanged for all t < T ), and keep moving

under the old system until the news is realized, at that time (ct, kt) just arrives the new saddle

path. The transition path in the Figure 3 is: A→ B → C.

2.3 Government Tax

In the Ramsey model, we can easily introduce a government tax rate. We take the above special

case as an example. We assume the government imposes an income tax τ on the household. So

the disposable income for the household is (1− τ) f (kt). Then the dynamic system becomes

kt+1 =
1

(1 + n) (1 + g)
[(1− τ) f (kt)− ct] , (42)

∆ct+1

ct
=

β

(1 + n) (1 + g)
(1− τ) f ′ (kt+1)− 1. (43)

Modify the solution in the special case a bit, we obtain

kt+1 =
αβ

(1 + n) (1 + g)
(1− τ) f (kt) , (44)

ct = (1− αβ) (1− τ) f (kt) . (45)

Last equations indicate that an increase in the income tax τ will reduce the capital and consump-

tion.

2.3.1 Expected Changes of τ

Now we use the phase diagram to discuss the dynamic impact of a change in tax rate on the

aggregate economy. Notice that an increase in τ will shift the curves of ∆ct = 0 and ∆kt = 0 to

the left. Figure 4 illustrates the new phase diagram.

Note that the k0 (= k∗) does not change in the period 0, because k is a predetermined (or

state) variable. Figure 4 illustrates the transition dynamics: A→ B → C. When the fundamental

changes, the consumption adjusts such that (c, k) will jump towards the new saddle path.7 Thus,

we call the variable ct as control variable or jump variable.

7In this case, the consumption immediately jumps to the saddle path, this is mainly due to the change of β is
unexpected and permanent.
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Figure 4: Transition dynamics under unexpected change of βt

2.3.2 Expected Changes of τ

Suppose that in the period 0, the economy is at the old steady state (c∗, k∗) . In the same period,

there is an announcement saying that there will be a permanent decrease in τ starting from t = T .

That is, τt = τ old when t < T, and τt = τnew, when t ≥ T . We denote the new steady state

as (c∗∗, k∗∗). To see how the economy responds to this news, we now solve the path through

guess-and-verify strategy. Since now τt is time varying, we guess kt+1 = st (1− τt) f (kt). Using

the same trick in the previous discussion yields

ct = [1− (1 + n) (1 + g) st (1− τt)] f (kt) , (46)

kt+1 =
αβ

(1 + n) (1 + g)

(1− τt) [1− (1 + n) (1 + g) st (1− τt)]
1− (1 + n) (1 + g) st+1 (1− τt+1)

f (kt) . (47)
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Finally, to pin down st, we have

st =
αβ

(1 + n) (1 + g)

1− (1 + n) (1 + g) st (1− τt)
1− (1 + n) (1 + g) st+1 (1− τt+1)

. (48)

Last equation provides a dynamic structure for the saving rate st. It takes a recursive rela-

tionship between st and st+1, i.e.,

st = g (st+1, τt, τt+1) . (49)

From this recursive structure, we can solve st by iterating last equation forwardly, i.e.,

st = g (g (st+2, τt+1, τt+2) , τt, τt+1) = g (g (g (st+3, τt+2, τt+3) , τt+1, τt+2) , τt, τt+1) = .... (50)

You can image that eventually we will obtain a formula like

st = h
(
τt, τt+1, τt+2, ..., lim

t→∞
τt; lim

t→∞
st

)
. (51)

The above equation provides a very important feature of the Ramsey model: when households

making their optimal saving decisions, they are forward looking. Therefore, any change about the

economic fundamental in the future (even though it does not happen right now) will affect the

economic behaviors in the current period. News shock matters for the economy!

Figure 5 illustrates the transition dynamics under an expected increase in τt. It shows that

even though the change of τt will occur in the future, the optimal transition for the economy is to

jump in the initial period (remember that the τ is still unchanged for all t < T ), and keep moving

under the old system until the news is realized, at that time (ct, kt) just arrives the new saddle

path. The transition path in the Figure 5 is: A→ B → C.
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Figure 5: Transition dynamics under expected change of βt
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