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Introduction 

Science is facts; just as houses are made of stones, 
so is science made of facts; but a pile of stones is not 
a house and a collection of facts is not necessarily 
science. 

—Henri Poincaré 

1.1 Background 

The seminal contribution of Kydland and Prescott (1982) marked the crest 
of a sea change in the way macroeconomists conduct empirical research. 
Under the empirical paradigm that remained predominant at the time, the 
focus was either on purely statistical (or reduced-form) characterizations of 
macroeconomic behavior, or on systems-of-equations models that ignored 
both general-equilibrium considerations and forward-looking behavior on 
the part of purposeful decision makers. But the powerful criticism of this 
approach set forth by Lucas (1976), and the methodological contributions 
of, for example, Sims (1972) and Hansen and Sargent (1980), sparked a 
transition to a new empirical paradigm. In this transitional stage, the for­
mal imposition of theoretical discipline on reduced-form characteriza­
tions became established. The source of this discipline was a class of mod­
els that have come to be known as dynamic stochastic general equilibrium 
(DSGE) models. The imposition of discipline most typically took the form 
of “cross-equation restrictions,” under which the stochastic behavior of a 
set of exogenous variables, coupled with forward-looking behavior on the 
part of economic decision makers, yield implications for the endogenous 
stochastic behavior of variables determined by the decision makers. Never­
theless, the imposition of such restrictions was indirect, and reduced-form 
specifications continued to serve as the focal point of empirical research. 

Kydland and Prescott turned this emphasis on its head. As a legacy of 
their work, DSGE models no longer serve as indirect sources of the­
oretical discipline to be imposed upon statistical specifications. Instead, 
they serve directly as the foundation upon which empirical work may be 
conducted. The methodologies used to implement DSGE models as foun­
dational empirical models have evolved over time and vary considerably. 
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The same is true of the statistical formality with which this work is con­
ducted. But despite the characteristic heterogeneity of methods used in 
pursuing contemporary empirical macroeconomic research, the influence 
of Kydland and Prescott remains evident today. 

This book details the use of DSGE models as foundations upon which 
empirical work may be conducted. It is intended primarily as an instruc­
tional guide for graduate students and practitioners, and so contains a dis­
tinct how-to perspective throughout. The methodologies it presents are 
organized roughly following the chronological evolution of the empirical 
literature in macroeconomics that has emerged following the work of Kyd­
land and Prescott; thus it also serves as a reference guide. Throughout, 
the methodologies are demonstrated using applications to three bench­
mark models: a real-business-cycle model (fashioned after King, Plosser, 
and Rebelo, 1988); a monetary model featuring monopolistically compe­
titive firms (fashioned after Ireland, 2004a); and an asset-pricing model 
(fashioned after Lucas, 1978). 

The empirical tools outlined in the text share a common foundation: a 
system of nonlinear expectational difference equations derived as the solu­
tion of a DSGE model. The strategies outlined for implementing these 
models empirically typically involve the derivation of approximations of 
the systems, and then the establishment of various empirical implications 
of the systems. The primary focus of this book is on the latter component 
of these strategies: This text covers a wide range of alternative methodolo­
gies that have been used in pursuit of a wide range of empirical applications. 
Demonstrated applications include: parameter estimation, assessments of 
fit and model comparison, forecasting, policy analysis, and measurement 
of unobservable facets of aggregate economic activity (e.g., measurement 
of productivity shocks). 

1.2 Overview 

This book is divided into three parts. Part I presents foundational material 
included to help keep the book self-contained. Following this introduc­
tion, chapter 2 outlines two preliminary steps often used in converting a 
given DSGE model into an empirically implementable system of equations. 
The first step involves the linear approximation of the model; the second 
step involves the solution of the resulting linearized system. The solution 
takes the form of a state-space representation for the observable variables 
featured in the model. 

Chapter 3 presents two important preliminary steps often needed for 
priming data for empirical analysis: removing trends and isolating cycles. 
The purpose of these steps is to align what is being measured in the data 
with what is being modelled by the theory. For example, the separation of 
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trend from cycle is necessary in confronting trending data with models of 
business cycle activity. 

Chapter 4 presents tools used to summarize properties of the data. 
First, two important reduced-form models are introduced: autoregressive­
moving average models for individual time series, and vector autoregressive 
models for sets of time series. These models provide flexible characteriza­
tions of the data that can be used as a means of calculating a wide range of 
important summary statistics. Next, a collection of popular summary statis­
tics (along with algorithms available for calculating them) are introduced. 
These statistics often serve as targets for estimating the parameters of struc­
tural models, and as benchmarks for judging their empirical performance. 
Empirical analyses involving collections of summary statistics are broadly 
categorized as limited-information analyses. Finally, the Kalman filter is 
presented as a means for pursuing likelihood-based, or full-information, 
analyses of state-space representations. Part I concludes in chapter 5 
with an introduction of the benchmark models that serve as examples in 
part II. 

Part II, composed of chapters 6 through 9, presents the following empir­
ical methodologies: calibration, limited-information estimation, maximum 
likelihood estimation, and Bayesian estimation. Each chapter contains a 
general presentation of the methodology, and then presents applications 
of the methodology to the benchmark models in pursuit of alternative 
empirical objectives. 

Chapter 6 presents the most basic empirical methodology covered in the 
text: the calibration exercise, as pioneered by Kydland and Prescott (1982). 
Original applications of this exercise sought to determine whether models 
designed and parameterized to provide an empirically relevant account of 
long-term growth were also capable of accounting for the nature of short-
term fluctuations that characterize business-cycle fluctuations, summarized 
using collections of sample statistics measured in the data. More generally, 
implementation begins with the identification of a set of empirical mea­
surements that serve as constraints on the parameterization of the model 
under investigation: parameters are chosen to insure that the model can 
successfully account for these measurements. (It is often the case that cer­
tain parameters must also satisfy additional a priori considerations.) Next, 
implications of the duly parameterized model for an additional set of statis­
tical measurements are compared with their empirical counterparts to judge 
whether the model is capable of providing a successful account of these 
additional features of the data. A challenge associated with this method­
ology arises in judging success, because this second-stage comparison is 
made in the absence of a formal statistical foundation. 

The limited-information estimation methodologies presented in chap­
ter 7 serve as one way to address problems arising from the statistical 
informality associated with calibration exercises. Motivation for their im­
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plementation stems from the fact that there is statistical uncertainty asso­
ciated with the set of empirical measurements that serve as constraints in 
the parameterization stage of a calibration exercise. For example, a sample 
mean has an associated sample standard error. Thus there is also statis­
tical uncertainty associated with model parameterizations derived from 
mappings onto empirical measurements (referred to generally as statisti­
cal moments). Limited-information estimation methodologies account for 
this uncertainty formally: the parameterizations they yield are interpretable 
as estimates, featuring classical statistical characteristics. Moreover, if the 
number of empirical targets used in obtaining parameter estimates exceeds 
the number of parameters being estimated (i.e., if the model in question is 
over-identified), the estimation stage also yields objective goodness-of-fit 
measures that can be used to judge the model’s empirical performance. 
Prominent examples of limited-information methodologies include the 
generalized and simulated methods of moments (GMM and SMM), and 
indirect-inference methods. 

Limited-information estimation procedures share a common trait: they 
are based on a subset of information available in the data (the targeted 
measurements selected in the estimation stage). An attractive feature of 
these methodologies is that they may be implemented in the absence of 
explicit assumptions regarding the underlying distributions that govern the 
stochastic behavior of the variables featured in the model. A drawback is 
that decisions regarding the moments chosen in the estimation stage are 
often arbitrary, and results (e.g., regarding fit) can be sensitive to parti­
cular choices. Chapters 8 and 9 present full-information counterparts to 
these methodologies: likelihood-based analyses. Given a distributional 
assumption regarding sources of stochastic behavior in a given model, 
chapter 8 details how the full range of empirical implications of the model 
may be assessed via maximum-likelihood analysis, facilitated by use of the 
Kalman filter. Parameter estimates and model evaluation are facilitated in 
a straightforward way using maximum-likelihood techniques. Moreover, 
given model estimates, the implied behavior of unobservable variables 
present in the model (e.g., productivity shocks) may be inferred as a by-
product of the estimation stage. 

A distinct advantage in working directly with structural models is that, 
unlike their reduced-form counterparts, one often has clear a priori guid­
ance concerning their parameterization. For example, specifications of sub­
jective annual discount rates that exceed 10% may be dismissed out-of­
hand as implausible. This motivates the subject of chapter 9, which details 
the adoption of a Bayesian perspective in bringing full-information pro­
cedures to bear in working with structural models. From the Bayesian 
perspective, a priori views on model parameterization may be incorporated 
formally in the empirical analysis, in the form of a prior distribution. Cou­
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pled with the associated likelihood function via Bayes’ Rule, the corre­
sponding posterior distribution may be derived; this conveys information 
regarding the relative likelihood of alternative parameterizations of the 
model, conditional on the specified prior and observed data. In turn, con­
ditional statements regarding the empirical performance of the model 
relative to competing alternatives, the implied behavior of unobservable 
variables present in the model, and likely future trajectories of model vari­
ables may also be derived. A drawback associated with the adoption of a 
Bayesian perspective in this class of models is that posterior analysis must 
be accomplished via the use of sophisticated numerical techniques; special 
attention is devoted to this problem in the chapter. 

Part III outlines how nonlinear model approximations can be used in 
place of linear approximations in pursuing the empirical objectives de­
scribed throughout the book. Chapter 10 presents three leading alterna­
tives to the linearization approach to model solution presented in chapter 
2: projection methods, value-function iterations, and policy-function 
iterations. Chapter 11 then describes how the empirical methodologies pre­
sented in chapters 6–9 may be applied to nonlinear approximations of the 
underlying model produced by these alternative solution methodologies. 

The key step in shifting from linear to nonlinear approximations involves 
the reliance upon simulations from the underlying model for characterizing 
its statistical implications. In conducting calibration and limited-informa­
tion estimation analyses, simulations are used to construct numerical 
estimates of the statistical targets chosen for analysis, because analytical 
expressions for these targets are no longer available. And in conducting full-
information analyses, simulations are used to construct numerical approx­
imations of the likelihood function corresponding with the underlying 
model, using a numerical tool known as the particle filter. 

The organization we have chosen for the book stems from our view that 
the coverage of empirical applications involving nonlinear model approx­
imations is better understood once a solid understanding of the use of 
linear approximations has been gained. Moreover, linear approximations 
usefully serve as complementary inputs into the implementation of nonlin­
ear approximations. However, if one wished to cover linear and nonlinear 
applications in concert, then we suggest the following approach. Begin 
exploring model-solution techniques by covering chapters 2 and 10 simul­
taneously. Then having worked through chapter 3 and sections 4.1 and 4.2 
of chapter 4, cover section 4.3 of chapter 4 (the Kalman filter) along with 
section 11.2 of chapter 11 (the particle filter). Then proceed through chap­
ters 5–9 as organized, coupling section 7.3.4 of chapter 7 with section 11.1 
of chapter 11. 

In the spirit of reducing barriers to entry into the field, we have devel­
oped a textbook Web site that contains the data sets that serve as examples 
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throughout the text, as well as computer code used to execute the method­
ologies we present. The code is in the form of procedures written in the 
GAUSS programming language. Instructions for executing the proce­
dures are provided within the individual files. The Web site address is 
http://www.pitt.edu/˜dejong/text.htm. References to procedures avail­
able at this site are provided throughout this book. In addition, a host 
of freeware is available throughout the Internet. In searching for code, 
good starting points include the collection housed by Christian Zimmer­
man in his Quantitative Macroeconomics Web page, and the collection of 
programs that comprise DYNARE: 

http://dge.repec.org/ 

http://www.cepremap.cnrs.fr/∼michel/dynare/ 

Much of the code provided at our Web site reflects the modification of 
code developed by others, and we have attempted to indicate this explic­
itly whenever possible. Beyond this attempt, we express our gratitude to 
the many generous programmers who have made their code available for 
public use. 

1.3 Notation 

A common set of notation is used throughout the text in presenting models 
and empirical methodologies. A summary is as follows. Steady state values 
of levels of variables are denoted with an upper bar. For example, the steady 
state value of the level of output yt is denoted as y . Logged deviations of 
variables from steady state values are denoted using tildes; e.g., 

�yt = log 
yt . 
y 

The vector xt denotes the collection of model variables, written (unless 
indicated otherwise) in terms of logged deviations from steady state values; 
e.g., 

xt = [�yt �ct nt ]′ 

The vector υt denotes the collection of structural shocks incorporated in 
the model, and ηt denotes the collection of expectational errors associ­
ated with intertemporal optimality conditions. Finally, the k × 1 vector µ 
denotes the collection of “deep” parameters associated with the structural 
model. 

http://www.pitt.edu/�dejong/text.htm
http://dge.repec.org/
http://www.cepremap.cnrs.fr/�michel/dynare/
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Log-linear approximations of structural models are represented as 

Axt +1 = Bxt + Cυt+1 + Dηt+1, (1.1) 

where the elements of the matrices A, B, C , and D are functions of the 
structural parameters µ. Solutions of (1.1) are expressed as 

xt +1 = F (µ)xt + G(µ)υt+1. (1.2) 

In (1.2), certain variables in the vector xt are unobservable, whereas 
others (or linear combinations of variables) are observable. Thus filter­
ing methods such as the Kalman filter must be used to evaluate the system 
empirically. The Kalman filter requires an observer equation linking observ­
ables to unobservables. Observable variables are denoted by Xt , where 

Xt = H (µ)′xt + ut , (1.3) 

with 

E(ut ut 
′ ) = �u . 

The presence of ut in (1.3) reflects the possibility that the observations of 
Xt are associated with measurement error. Finally, defining 

et+1 = G(µ)υt+1, 

the covariance matrix of et+1 is given by 

Q (µ) = E(et et 
′ ). (1.4) 

Given assumptions regarding the stochastic nature of measurement er­
rors and the structural shocks, (1.2)–(1.4) yield a log-likelihood function 
log L(X |�), where � collects the parameters in F (µ), H (µ), �u , and 
Q (µ). Often, it will be convenient to take as granted mappings from µ to 
F , H , �u , and Q . In such cases the likelihood function will be written as 
L(X |µ). 

Nonlinear approximations of structural models are represented using 
three equations, written with variables expressed in terms of levels. The 
first characterizes the evolution of the state variables st included in the 
model: 

st = f (st−1, υt ), (1.5) 

where once again υt denotes the collection of structural shocks incorpo­
rated in the model. The second equation is known as a policy function, 
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which represents the optimal specification of the control variables ct in­
cluded in the model as a function of the state variables: 

ct = c(st ). (1.6) 

The third equation maps the full collection of model variables into the 
observables: 

Xt = �g(st , ct , υt , ut ) (1.7) 

≡ g(st , ut ), (1.8) 

where once again ut denotes measurement error. Parameters associated 
with f (st −1, υt ), c(st ), and g(st , ut ) are again obtained as mappings from 
µ, thus their associated likelihood function is also written as L(X |µ). 

The next chapter has two objectives. First, it outlines procedures for 
mapping nonlinear systems into (1.1). Next, it presents various solution 
methods for deriving (1.2), given (1.1). 




