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Preface
Aim of this work of mine is to provide clear macroeconomic knowledges in language as simple as possible.
Most of this note is taken from the advanced macroeconomics course of Yanfei Deng I took. This note is
still a work in progress and needs tons of ammending. See the newest version at https://github.com/
xolarvill/notes-on-economics along with my other notes. And pull a request if you figure some part
of this note is wrong.
This work was first written in markdown language on Obsidian, which provides a lightweight and highly
personalized working experience. But it was later transfered into purely latex language on Sublime Text, due
to poor support for rendering of long math equation blocks of Obsidian. For the tranfer I used Pandoc at
https://pandoc.org/. I wrote some LaTeX snippets of Sublime Text to optimize the writing experience,
and uploaded on github at https://github.com/xolarvill/snippets-for-quick-latex-on-st.
One can find enormous academical help on advanced macroeconomics from books listed below:

• Introduction to Modern Economic Growth, D. Acemoglu
• Economic Growth, R. Barro and S.i.M. Xavi
• The ABCs of RBCs, An Introduction to Dynamic Macroeconomic Models, G. McCandless
• Macroeconomics, A Comprehensive Textbook for First-Year Ph.D. Courses in Macroeconomics. M.

Azzimonti, P. Krusell, A. McKay, and T. Mukoyama
• Adavanced Macroeconomics, D. Romer
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Part I

Models of Growth
• Classical model
• Keynesian model
• Solow-Swan model
• Ramse-Cass-Koopsman model
• Overlapping generations model
• (Endogenous model)
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1 Classical Model

Learning points for 23-2 Course: the goal is to understand:

• motivations for contruction of a model
• the common approach to analyze a model
• how models evolve over time
• target function and constraint

In a perfectly competitive market, the economic system can be described as1:

AS:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y = A ⋅ F (K,N) (Only N is endogenously chosen; Inada conditions)
maxπ⇒ W

P
= FN(K,N)

N = N(W
P
),N ′ > 0 (ad hoc, assuming labor market clearing)

(1)

AD:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y = C + I +G + δK
C = C(Y,T − π)
I = I(q − 1), I ′ > 0, q ≡ Fk−(r+δ−π)

r−π
M
P
=m(Y, r),m1 > 0,m2 < 0

(2)

Note 1 (Exogeneous variables in this model would be).

• In AS: K
• In AD: K,G,M,π, δ, T

At the equilibrium, the endogenous variables could be determined jointly by multiple exo variables. e.g.

AS⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y ∗ = f(k)
N∗ = g(k)
(W
P
)∗ = h(k)

Question 1 (how to calculate N at the equilibrium?).
By using total derivatives, we could have:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dY = dY (dK)
dW

P
= dW

P
(dK)

dW = dW (dK)
dP = dP (dK)

1See in Sargint, 1987
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Note 2. All a model can contain are:

• behavioral function
⎧⎪⎪⎨⎪⎪⎩

by ad hoc
by optimization

• definitive function
• equilibrium conditions

Note 3 (General way of advanced macroeconomics). By method, there are optimization, equilibrium-
conducting and comparative analysis. And all of three can do both static analysis and dynamic
analysis.

Note 4. Inada conditions making sure that profit maximization is feasible
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2 Keynesian Model
In a brief way, a Keynesian model can be seen as two parts:

AS:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y = F (K,N)
W
P
= FN(K,N)

NS = Ns (WP ) ,where in most cases neglected from the equations
(3)

AD:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y = C + I +G + δK
C = C(Y,T − π)
I = I(q − 1), I ′ > 0, q ≡ Fk−(r+δ−π)

r−π
M
P
=m(Y, r),m1 > 0,m2 < 0

(4)

The Keynesian model consists of six equations, instead of seven in classical model. Because labor market is
not clearing. So the wage is exogenous.
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3 Solow Model
The Solow-Swan model is an economic model of long-run growth, focusing on capital accumulation,
population growth, and technological progress. Developed by Robert Solow and Trevor Swan in 1956, it
replaced the Keynesian Harrod-Domar model.

Mathematically, the Solow-Swan model is a nonlinear system consisting of a single ordinary
differential equation that models the evolution of the per capita stock of capital.

Learning points for 23-2 Course:
• the economic environment of Solow model
• the main equations in Solow model
• Several key concepts of Solow model, i.e. golden rate, equilibrium dynamics
• how does the model converge under different conditions

3.1 Economic Environment and Specific Assumptions
Solow model seems to have simple assumptions, but in which many things are pre-assumed.
Sections

• A Solow model assumes only two sections in participation

Y (t) = C(t) + I(t) = C(t) + S(t) (5)

Household

• A large number of non-optimizing homogeneous households (with ad-hoc assumptions)⇒ represen-
tative agent

• Constant saving rate of s ∈ [0,1]⇒ S(t) = sY (t) = I(t)

Firm

• A large number of non-optimizing homogeneous firms (with ad-hoc assumptions) ⇒ representative
agent

• Since sharing a common production method, it can use an aggregate production function

Market structure

• Competitive⇒ Solow model is a prototypical competitive general equilibrium model

Endowment (labor and capital)

• Labor L(t) provided inelastically by households at wage w(t)
• Households also own the capital K(t) and rent it to firms at capital rate R(t)
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• The inital capital is given as K(0)
• Capital exponential depreciation is denoted as δ ⇒ real interest rate r(t) = R(t) − δ
• How the capital is distributed is irrelevant to our exploring

Market clearing

• Labor market clearing condition is L(t) = L̄(t)
• Capital market clearing condition is Ks(t) =Kd(t)

Technology

• Technology is free and publicly available

Production function
The aggregate production function is

• continuous
• differentiable
• positive
• diminishing MP
• CRTS

Production function in Harrold form

Yt = F (Kt,AtLt) (6)

• This format of production function means, in the final, the ratio of capital to production K/Y will be
stable.

• It is convient to make At times Lt instead of other ways in Solow Model.

Note 5 (Production function in Hicks neutrality form).

Yt = AtF (Kt, Lt)

CRTS

Ft(cKt, cLt) = cF (Kt, Lt), ∀c ⩾ 0 (7)

• One way to see CRTS as a reasonable requirement is that imagining the scale of economy large enough
to cover the potiential benefits of cooperation.

• Another way is imagining all other factors are compared irrelevant than capital, labor and knowledge.
• The CRTS assumption can derive the production function to y = f(k).

Inada Conditions

lim
x→0

y = lim
x→0

f(x) =∞ (8)

lim
x→∞

y = lim
x→∞

f(x) = 0 (9)
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• Many have argued that Inada conditions are the key limits of Solow model, as well as the exogenosu
tech growth rate.

• The purpose of this setting is to confine the model from wild spreading.
• Cobb-Douglas Function is very suitable in this setting. It is rather reducted than deducted from the

economic nature.

Note 6 (No profits for firms).

⇒ PMP: (10)
max

L(t),K(t)
F −w(t)L(t) −R(t)K(t) (11)

⇒
⎧⎪⎪⎨⎪⎪⎩

w(t) = FL

R(t) = FK

(12)

⇒ Y (t) = w(t)L(t) +R(t)K(t) (applying Euler’s equation) (13)
Meaning the firms make no profits. They are just profit-maximizing. (14)

Main equations
All of these above should be considered oversimplication of the real world, but to the favor of an economist.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yt = F (Kt,AtNt)
It = St = sYt
Kt+1 = It + (1 − δ)Kt

(15)

3.2 Solow model in discrete time

Note 7 (Impulse response function). Impulse response functions are useful for studying the interactions
between variables in a vector autoregressive model. They represent the reactions of the variables to
shocks hitting the system. It is often not clear, however, which shocks are relevant for studying specific
economic problems.

Note 8. Even the edge or limit of a dynamic state is no way near the steady state.

Fundamental law of motion

Solow model’s motion equations
⎧⎪⎪⎨⎪⎪⎩

Yt = F (Kt,At, Lt)
Kt+1 = (1 − δ)Kt + It

(16)
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Question 2 (how to solve this set of difference equations?). See Gao Xu, 2017 and McCandless, 2008

yt =
Yt
Nt
= At ⋅ F (

Kt

Nt
,
Nt

Nt
) ≡ Atf(kt) (17)

Kt+1 = (1 − δ)Kt + It (18)

⇒ Kt+1

Nt+1

Nt+1

Nt
= (1 − δ)Kt

Nt
+ It
Nt

(19)

⇒ kt+1 =
(1 − δ)kt + it

1 + n (20)

⇒ (1 + n)kt+1 = (1 − δ)kt + it (transpose) (21)
⇒ (1 + n)kt+1 = (1 − δ)kt + st (22)
⇒ (1 + n)kt+1 = (1 − δ)kt + s ⋅ (1 + α)tA0 ⋅ yt (α is the growth rate for tech, in simplest case= 0)

(23)
⇒ (1 + n)kt+1 = (1 − δ)kt + sA0yt (24)

It is obvious the steady state of capital per worker can be found at when kt+1 = kt = k∗

kt+1 = g(kt) =
(1 − δ)kt + sA0f(kt)

1 + n (25)

Equilibrium steady states in a phase diagram
With At and Nt being stable (not have to be constant), the solution of difference equations in discrete Solow
model is kt+1 = sf(kt) + (1 − δ)kt, which leads to the phase diagram below
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Equilibrium dynamics, solving the k∗

kt+1 = sf(kt) + (1 − δ)kt (26)
= g(kt) (27)
⇒ eventually that k∗ = g(k∗) (28)

⇒ k∗

f(k∗) =
s

n + δ (meaning capital-output ratio is anchored by the parameters) (29)

⇒ k∗ = ⋅ (solving the real final k) (30)

Growth rate
The growth rate of capital is denoted as

γt =
kt+1
kt
= (1 − δ)kt + sA0f(kt)

(1 + n)kt
(31)

Intertemporal equilibrium, convergence speed and convergence time

kt+1 = g(kt) (32)
⇒ kt+1 = k∗ + g′(k∗)(kt − k∗) (33)
⇒ kt+1 = k∗ + g′(k)(kt − k∗) (34)

⇒ ˆkt+1 ≡
kt+1 − k∗

k∗
= g′(k∗)(kt − k

∗

k∗
) = g′(k∗)k̂t (redefining) (35)

⇒ k̂t = [g′(k∗)]tk̂0 (by the method of iteration, the equil steady state of capital growth ratio) (36)

⇒ t =
log k̂t

k̂0

log g′(k∗) (using logarithms) (37)

⇒ t =
log kt−k

∗

k0−k∗

log g′(k∗) (meaning the time t is now decided by the location of capital kt) (38)

We have the convergence speed g′(k∗) and convergence time t.
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Note 9 (Steady State vs Intertemporal Equilibrium). Despite of seemingly different division, the two
are sides of a coin.

Balance of growth

kt =
Kt

AtLt
(39)

⇒ dKt

kt
= dkt
kt
+ dAt

At
+ dNt

Nt
(40)

Convergence under different conditions:

i) first scenerio:
⎧⎪⎪⎨⎪⎪⎩

At = a
Nt = n

kt ≡
Kt

N
(41)

yt ≡
Yt
N
= F [Kt

N
,A] = f(kt) (42)

kt+1 = sf(kt) + (1 − δ)kt (43)
The steady state equilibrium is k(t) = k∗, ∀t (44)

ii) second scenerio:
⎧⎪⎪⎨⎪⎪⎩

At = a
Nt

Nt−1
= 1 + n

iii) third scenerio:
⎧⎪⎪⎨⎪⎪⎩

At

At−1
= 1 + a

Nt

Nt−1
= 1 + n

3.3 Solow model in continuous time
Let A(t) = 1, we have the Solow model in continous time

Y (t) = F [K(t), L(t)] (45)
I(t) = S(t) = sY (t) (46)
˙K(t) = It − δKt (47)

Derivation of the basic function of Solow model in continuous time, which is the steady state of Solow model
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k(t) = K(t)
L(t) (48)

˙k(t)
k(t) =

˙K(t)
K(t) −

˙L(t)
L(t) (49)

˙k(t)
k(t) =

sF − δK(t)
K(t) − n (50)

˙k(t)
k(t) =

(sF − δK(t)/L(t))
K(t)/L(t) − n (51)

⇒ ˙k(t) = sf[k(t)] − (δ + n)k(t) (52)

Intertemporal equilibrium, convergence speed and convergence time

˙k(t) = sf[k(t)] − (δ + n)k(t) ≡ g[k(t)] (53)
⇒ eventually at steady state g(k∗) = 0 = sf[k∗] − (δ + n)k∗ (54)

⇒ k∗

f(k∗) =
s

δ + n (the anchored capital-output ratio determined by parameters) (55)

⇒ ˙k(t) ≈ g(k∗) + g′(k∗)[k(t) − k∗] (linearization by using Taylor expansion) (56)

⇒ dK(t)
dt

= g′(k∗)k(t) − g′(k∗)k∗ (57)

⇒ k(t) = [k(0) − k∗]e[g
′
(k∗)t] + k∗ (58)

⇒ transposition (59)

Denote ˆk(t) ≡ k(t) − k
∗

k∗
= e[g

′
(k∗)t] k(0) − k∗

k∗
(60)

⇒
ˆk(t)
ˆk(0)
= eg

′
(k∗)t (61)

⇒ Denote t =
log[ ˆk(t)

ˆk(0)
]

g′(k∗) (62)

⇒ Like in discrete time, we have the convergence speed g′(k∗) and time for convergence t (63)

3.4 Golden Rate
One of the philosophies upon which economic science is established is utilitism. In approximate understand-
ing, that is achieving max happiness by max consuming. To do so in a stationary state in Solow model, the
idea of golden rate is introduced.
Golden rate in discrete time, or the maximized welfare of Solow model
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Starting with two ad-hoc assumptions
⎧⎪⎪⎨⎪⎪⎩

Ct = (1 − s)Yt
St = sYt

(64)

⇒ At the steady state: (65)
c∗(s) = (1 − s)f[k∗(s)] = f[(1 − s)k∗(s)] = f[k∗(s)] − (n + δ)k∗(s) (66)
⇒max c∗ (67)
⇒ sg = argmax

s
c∗ (golden rate of saving) (68)

⇒ k∗g = argmax
k∗

c∗ (golden rate of capital per capita) (69)

Question 3 (Why does Solow model matter?).
Jess Benhabib and Mark M. Spiegel, 1994, The role of human capital in economic development:
Evidence from aggregate cross-country data. Journal of Monetary Economics 34: 143-17

”Our results indicate that human capital enters insignificantly in explaining per capita
growth rates.”

Lant Pritchett, 2001, Where has all the education gone? The World Bank Economic Review 15(3):
367-391.

”Cross-national data show no association between increases in human capital attributable
to the rising educational attainment of the labor force and the rate of growth of output per
worker. This implies that the association of educational capital growth with conventional
measures of total factor production is large, strongly statistically significant, and negative.”

Chandra Shekhar Kumar, 2006, Human capital and growth empirics. The Journal of Developing Areas
40(1): 153-179.

”In all the above estimation methodologies, the positive and significant effect of human
capital is not observed.”

There must be various reasons to explain the fact. Pritchett examines three possible reasons. But, before
arguing the reasons, one inquiry seems to be missing. It is the question of validity of Solow augmented
production function and by consequence the validity of endogenous growth theory (at least that based
on the Lucas-Uzawa model). Three papers above cited imply that there is no significant positive effect
of human capital accumulation on the increase of per capita product.

3.5 Extensions
Solow model with money

• Purvis, Douglas D. “Introducing Useful Money into a Growth Model.” The Canadian Journal of
Economics / Revue Canadienne d’Economique 4, no. 3 (1971)

Augmented Solow model

• N. Gregory Mankiw, David Romer, David N. Weil, A Contribution to the Empirics of Economic
Growth, The Quarterly Journal of Economics, Volume 107, Issue 2, May 1992, Pages 407–437
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AK model (often treated as a tool to introduce endogeneous growth model)

• Romer, Paul M. (1986). ”Increasing Returns and Long-Run Growth”. Journal of Political Economy.
94 (5): 1002–1037.

Malthus to Solow (unified growth theory)

• Hansen, Gary, D., and Edward C. Prescott. 2002. ”Malthus to Solow .” American Economic Review,
92 (4): 1205–1217.
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4 Ramsey Model

See Chapter 5 to Chapter 7 from Acemoglu, 2004 for more mathematical help.

We begin the road to sophiscated macro skyscraper with the most basic frame, the Ramsey model.
The Ramsey model2, or the RCK model, or the Neoclassical growth model differs from the Solow model in
that the choice of consumption is explicitly microfounded at a point in time and so endogenizes the savings
rate. Ramsey model is in nature a growth model with consumer optmization.
The most intuitive change is now we put St under max as max

{Ct,St}

.

4.1 Assumptions
• Same as Solow Model

– Production Function in the Harrold neutrality form
– Exogenous Variables:
– Population growth rate= n
– Technology growth rate= g
– Depreciation rate= 0 (for simplicity)
– And most of all, the technological growth rate is assumed as a.

• Firm

– Perfect competitive firms, or homogenous firms, or representive firms
– Hire workers and capital in competitive factor markets
– Each has the production function Y = F (K,AL)
– Firms are owned by the families, meaning the revenue goes straight to latter

• Household

– Homogenous families.
– Population growth of each household is assumed as n.
– Each member in a household provides one unit of labor.
– Income of a household is the sum of the labor revenue subsum, the capital revenue subsum and

the firm revenue share subsum.
– A household should and must maximize the utility.
– Degree of patience denoted as discount factor β = 1

1+ρ
, and ρ is the discount rate.

Note 10 (Rule of Prohibiting Ponzi Schemes). Conconstraint in Ramsey model is also called Pro-
hibiting Ponzi Schemes Rule. It forbids the household to do a scam of rolling over debt by repeatedly
borrowing. Yet in real life, many people are doing this as a harmless way to ralex debt pressure.

2Ramsey, Frank P. (1928). ”A Mathematical Theory of Saving”. Economic Journal. 38 (152): 543–559.
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4.2 Solution of Ramsey model
4.2.1 Central Planner’s Problem

Originally Ramsey set out the model as a social planner’s problem of maximizing levels of consumption
over successive generations. Only later was a model adopted by Cass and Koopmans as a description
of a decentralized dynamic economy with a representative agent. This is also why the model is called
Ramsey-Cass-Koopsman model, yet abbreviated as Ramsey model.
So, chronologically the first thing we should address is central planner’s problem.
Disperssive competition
UMP

max
{Ct,Kt+1}∞t=0

∞

∑
t=0

βtu(Ct)

s.t.Ct +Kt+1 − (1 − δ)Kt =WtLt +Rtkt +Dt

(70)

Noticing that the constraint is equivalent to Ct + It = Yt +Dt

Solving this UMP resulting Euler’s equation

⇒u′[F (Kt) −Kt+1] = u′(Ct) = βu′(Ct+1)F ′(Kt+1)

⇐⇒ u′(Ct)
u′(Ct+1)

= βRt+1

(71)

PMP at a perfectly competitive market

max
Kt

π = F (Kt,AtLt) − (r + δ)Kt −wLt (72)

where the AtLt is assumed as a constant in order for model to converge

F.O.C.⇒ r + δ = R = 1 + r (73)

In a conclusion, optimization in the disperssive economy yields
⎧⎪⎪⎨⎪⎪⎩

u′(Ct)

u′(Ct+1)
= βRt+1

r + δ = R = 1 + r
Central Planner’s Problem

max
{Ct,Kt+1}∞t=0

∞

∑
t=0

βtu(Ct)

s.t. Ct +Kt+1 = Yt, where δ is assumed as 1
(74)

Using Lagranian method and acquire Euler’s equation

⇒u′(F (Kt) −Kt+1) = u′(Ct) = βu′(Ct+1)F ′(K + 1)

⇐⇒ u′(Ct)
u′(Ct+1)

= βRt+1

(75)

Conclusion
Regardless of the economy being disperssive or central planning, we would have the same Euler’s equation
of consumption. This suggests for simplicity, we might as well use central planner’s problem.
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4.2.2 Method of Lagrangian

We start from scratch, then move on to methods like using Hamiltonian equation or using Bellman equation.
one-period static optimization

v = f(x1, x2)
s.t. g(x1, x2) = z

(76)

two-period dynamic optimization
A general form is denoted as

max v = f(x1, x2)
s.t. g(x1, x2) = z (where the subscript is denoted as time periods)

(77)

a two-period consumer maximization problem can be denoted as

max
C1,C2

u1 = u(C1) + βu(C2)

s.t.

⎧⎪⎪⎨⎪⎪⎩

C1 + S1 ⩽ [r + (1 − δ)]S0 + Y1
C2 + S2 ⩽ [r + (1 − δ)]S1 + Y2

,where we assume
⎧⎪⎪⎨⎪⎪⎩

S0 = S2 = 0
C1,C2 > 0

(78)

The reconstraints⇒ C1 +
C2

1 + r = Y1 +
Y2
1 + r (intertemporal budget conconstraint) (79)

Question 4 (How to solve the intertemporal UMP?).
(1). method of elimination
du1

dC1
= 0 ⇒ βu′(C2)

u′(C1)
= 1

1+r
( the Euler’s equation of intertemporal consumption) In which the 1

1+r
is

the comparative price
(2). method of geomotry
On a C1 −C2 plane,

0 = u′(C1)dC1 + βu′(C2)dC2 (80)

⇒ dC2

dC1
= − u

′(C1)
βu′(C2)

(81)

(3). method of Lagrangian function

L = u(C1) + βu(C2) + λ[C1 +
C2

1 + r − Y1 −
Y2
1 + r ] (82)

⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂L
∂C1
= 0

∂L
∂C2
= 0

∂L
∂λ
= 0

(83)

⇒ βu′(C2)
u′(C1)

= 1

1 + r (in the difference equation lies the core of Ramsey model ) (84)
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t-period dynamic optimization (finite-period)
1) The original version:

max
C1,C2,...,C(T )

u1 = u(C1) + βu(C2) + β2u(C3) + ... + βT−1u(CT )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C1 + S1 ⩽ [1 + r]S0 + Y1
C2 + S2 ⩽ [1 + r]S1 + Y2

. . .

CT + sT ⩽ (1 + r)ST−1 + YT

,where we assume
⎧⎪⎪⎨⎪⎪⎩

δ = s0 = sT = 0
C1,C2, ...,CT > 0

(85)

where the budget constraints can be condensed into

C1 +
C2

1 + r + ... +
CT

(1 + r)T−1 = Y1 +
Y2
1 + r + ... +

YT
(1 + r)T−1 (86)

2) Or the second version:

max
{Ct}

∞
t=1

u1 =
T

∑
t=1

βt−1u(Ct)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C1 + S1 ⩽ [1 + r]S0 + Y1
C2 + S2 ⩽ [1 + r]S1 + Y2

. . .

CT + ST ⩽ (1 + r)ST−1 + YT

,where we assume
⎧⎪⎪⎨⎪⎪⎩

S0 = ST = 0, δ = 0
C1,C2, ...,CT > 0

(87)

To solve this t-period UMP, using Langranian method: (the λ is the shadow price)

max
{Ct}

∞
t=1,λ

L =
T

∑
t=1

βt−1u(Ct) + λ[c1 +
c2

1 + r + ... +
CT

(1 + r)T−1 − (Y1 +
Y2
1 + r + ... +

YT
(1 + r)T−1 )] (88)

⇒ F.O.C.s

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂c1
= 0

∂L
∂C2
= 0

⋮
∂L
∂CT
= 0

(89)

⇒ βu′(Ct+1)
u′(Ct)

= 1

1 + r , t = 1,2 . . . , T (90)

3) Another commonly adopted simplified version is

max
{Ct,St}

T
t=1
u1 =

T

∑
t=1

βT−1u(Ct)

s.t.Ct + St ⩽ (1 + r)St−1 + Yt, where
⎧⎪⎪⎨⎪⎪⎩

Ct > 0
S0 = ST = 0

(91)
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Using Lagrangian function method:

⇒ u′(Ct+1) = λt+1 (92)

⇒ u′(Ct+1)
u′(Ct)

= λt+1
λt
= 1

β(1 + r) (93)

⇒ βu′(Ct+1)
u′(Ct)

= 1

1 + r (94)

infinite-period dynamic optimization
Using the third version, we delve into infinity

max
{Ct}

∞
t=1

u1 =
∞

∑
t=1

βT−1u(Ct)

s.t.Ct + St ⩽ (1 + r)St−1 + Yt, where
⎧⎪⎪⎨⎪⎪⎩

Ct > 0
S0 = lim

t→∞
ST = 0

(95)

Using Lagrangian function method:

L ≡
∞

∑
t=0

{βtu(ct) + λt[(1 + r)st−1 + Yt − (ct + st)]} (96)

⇒ F.O.C. (97)
⇒ u′(ct+1) = λt+1 (98)

⇒ u′(ct+1)
u′(ct)

= λt+1
λt
= 1

β(1 + r) (99)

⇒ βu′(ct+1)
u′(t) = 1

1 + r (100)

4.2.3 Method of Hamiltonian Equation (Optimal Control)

Method of Hamiltonian equation is part of the optimal control theory from mathematicals.
a) discrete time

max
{ct,st}Tt=0

u1 =
T

∑
t=1

βT−1u(ct)

s.t.ct + st ⩽ (1 + r)st−1 + Yt, where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ct > 0
s−1 = sT = 0
β = 1

1+ρ

(101)

b) continuous time without patience

max
{C(t),S(t)}

u = ∫
T

t=0
e−ρtu[C(t)]dt = ∫

T

t=0
u[C(t)]dt

s.t. C(t) + Ṡ(t) = r ⋅ S(t) + Y (t), where S(0) = S(T ) = 0
(102)
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Using Lagrangian

⇒L = ∫
T

t=0
{u[C(t)] + λ(t)[C(t) + Ṡ(t) − r ⋅ S(t) − Y (t)]}dt (103)

= ∫
T

t=0
{H(t) − λ(t)Ṡ(t)}dt (H is Hamiltonian) (104)

= ∫
T

t=0
H(t)dt − ∫

T

t=0
λ(t)Ṡ(t)dt (Then applying fractional integral method to latter) (105)

= ∫
T

t=0
H(t)dt − {λ(t)S(t)∣T0 − ∫

T

t=0
λ̇(t)S(t)dt} (106)

= ∫
T

t=0
H(t)dt − λ̇(t)S(t)dt − [λ(t)S(t)]∣T0 (107)

= ∫
T

t=0
H(t)dt + λ̇(t)dt (108)

with this simplified version containing Hamiltonian

⇒ F.O.C. of Lagrangian function:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L
∂C(t)

= 0 (C(t) is the control variable)
∂L
∂S(t)

= 0 (S(t) is the state variable)
∂L
∂λ(t)

= 0 (λ(t) is the monodromy variable)
(109)

⇒ the optimal control

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂H
∂C(t)

= 0
∂H
∂S(t)

= −λ̇(t)
∂H
∂λ(t)

= Ṡ(t)
(110)

Note 11 (control variable and state variable). If a variable is determined in the current period, it is a
control variable. If it is determined period(s) before, it is a state variable.

c) continuous time with patience
Next we consider the Lagrangian function with subjective discount rate
Right into this version’s Lagrangian function

L = ∫
T

t=0
{e−ρtu[C(t)] + λ(t)[C(t) + Ṡ(t) − r ⋅ S(t) − Y (t)]}dt (111)

= ∫
T

t=0
{e−ρtu[C(t)] + λ(t)[rS(t) + Y (t) −C(t)] − λṠ(t)}dt (112)

= ∫
T

t=0
{H(0) − λṠ(t)}dt (H(0) is present value Hamiltonian) (113)

⇒H(0) ≡ e−ρtu[C(t)] + λ(t)[rS(t) + Y (t) −C(t)] (114)

⇒ H̃(t) = eρtH(0) (the current value Hamiltonian) (115)
⇒H(t) = u[C(t)] + η(t)[rS(t) + Y (t) −C(t)] (116)

Comparing the two scenarios (with and without consideration for ρ), we can see — regardless of the subjective
discount rate, result would be the same.
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4.2.4 Method of Bellman Equation (Dynamic Programming)

a) discrete time
UMP as below

max
{Ct,St}

∞
t=0
u0 = βtu(Ct)

s.t. Ct + St = (1 + r)St−1 + Yt, where S1 = lim
t→∞

st = 0
(117)

Using the budget constraint to rewrite utility function

⇒ Ct = (1 + r)St−1 + Yt − St (118)
⇒ u0 = max

{St}
∞
t=0
βtu[(1 + r)St−1 + Yt − St] (119)

=max
S0

βtu[(1 + r)S−1 + Y0 − S0] + β max
{St}

∞
t=1

∞

∑
t=1

βt−1u[(1 + r)St−1 + Yt − St] (120)

=max
s0

u[(1 + r)S−1 + Y0 − S0] + βu(S0, Y1) (121)

Upscript o denotes optimal

⇒ uo(St−1, Yt) =max
St

{u[(1 + r)St−1 + Yt − St] + βuo(St, Yt+1)} (Bellman equation) (122)

=max
St

{u(Ct) + βuo(St, Yt+1)} (123)

⇒ F.O.C. ∶ uCt

∂Ct

∂St
+ β du(St, Yt+1)

dSt
= 0 (124)

Let ∂Ct

∂St
be −1

⇒ β
du(st, Yt+1)

dst
= uct (125)

Move one period ahead and acquire Euler’s equation

(126)
u(st, Yt+1) =max

st+1
{u[(1 + r)st + Yt − st+1] + βu(st+1, Yt+2)} (127)

⇒ duo(st, Yt+1)
dst

= ∂u(⋅)
∂st

+ ∂u(⋅)
∂st+1

dst+1
dst

+ β du
o(⋅)
dst

dst+1
dst

(128)

= ∂u(⋅)
∂st

+ [∂u(⋅)
∂st+1

+ β du
o(⋅)

dst+1
]dst+1
dst

(using optimals’ envelope therome ) (129)

= uc,t+1
dct+1
dst

+ 0 (130)

= uc,t+1 ⋅ (1 + r) (131)

⇒ β
uc,t+1

uc,t
= 1

1 + r (132)

Hence the same result as before.
b) continuous time (Hamilton-Jacob-Bellman, HJB)
See in ...
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4.3 Intertemporal Equilibrium of Ramsey model
4.3.1 Dynamics of c

Recalling that

˙c(t)
c(t) =

r(t) − ρ − θg
θ

(133)

Since we know

r(t) = f ′[k(t)] (134)

Combining them as

˙c(t)
c(t) =

r(t) − ρ − θg
θ

= f
′[k(t)] − ρ − θg

θ
(135)

Once we assume that

∃k∗ ∈ R, f ′[k∗] = ρ − θg (136)

The dynamics of c, denoted as
˙c(t)

c(t)
is purely dependent on the value of k according to Ramsey model.

4.3.2 Dynamics of k

Since in Ramsey model we don’t assume depreciation of capital k, denoted as δ = 0. The dynamics of k
accordingly is k̇(t) = f[k(t)] − c(t) − (n + g)k(t).
This way, in order for the dynamics of k returning to 0, the model must fulfil the requirement of c(t) =
f[k(t)] − (n + g)k(t).

4.3.3 Phase diagram and dynamic efficiency

Combining the the two dynamics together, we would have

k̇ = 0 (137)
ċ = 0 (138)

in a coordinate system of k and c.

Note 12 (dynamic efficiency in Ramsey model). Beware that the equilibrium of two dynamics would
always be on the left of golden rate of k̇. The origin point (0,0) can also be considered a special case
of equilibrium.
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The equilibrium in Ramsey model has given only one equilibrium path.
Recalling the Solow presented as model equation of motion

kt+1 − (1 − δ)kt = sF (kt) (139)

RCK model has two equations of motion

⎧⎪⎪⎨⎪⎪⎩

u′(ct)
u′(ct+1)

= β[F ′(kt+1) − (1 − δ)]
kt+1 − (1 − δkt) = F (kt) −Ct

(140)

Acquirring the steady state of Ramsey model

⎧⎪⎪⎨⎪⎪⎩

kt+1 = kt = k∗,△k = 0
ct+1 = ct = c∗,△c = 0

(141)

⇒ F ′(k∗) = ρ + δ⇒ k∗ (142)
⇒ c∗ = F (k∗) − δk∗ (143)
⇒ (k∗, c∗) is the steady state (144)

⇒ dc∗

dk∗
= F ′(k) − δ = R − δ (145)

Deriving the derivatives at steady state

⎧⎪⎪⎨⎪⎪⎩

∂△c
∂k
< 0

∂△k
∂c
< 0

(146)

, meaning there must be seperating line for each

△ c = 0 (147)
⇒ F ′(k∗) = ρ + δ (from the first equation of motion of RCK) (148)
⇒ Fkkdk = 0dc (149)

⇒ dc

dk
= Fkk

0
⇒ the seperating line is vertical in C-K plane (150)

△ k = 0 (151)
⇒ C∗ = F (k∗) − δk∗ (152)

⇒ dc

dk
= Fk − δ⇒ the seperating line is vertically reversed U shape (153)
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4.4 Linearization
Comparing Solow and Ramsey:
Solow model’s Euler equation

k̇(t) + δk(t) = sF (k(t)) (154)

Ramsey model’s Euler equations

ċ(t) = F
′[k(t) − (δ + ρ)]

θ
c(t), where θ = −cu

′′(c)
u′(c) (155)

k̇(t) = F [k(t)] − δk(t) − c(t) (156)

Noticing the two equations of Ramsey are unlinear. This demands a process of linearization.
Linearization, method of Taylor expansion
First method we use the same technique from Solow model’s linearization, Taylor’s Expansion.
First order Taylor expansion of RCK’ Euler equations:

[ċ(t)
k̇(t)] = [

F ′[k(t)−(δ+ρ)]
θ

c(t)
F [k(t)] − δk(t) − c(t)] = [

ϕ1[c(t), k(t)]
ϕ2[c(t), k(t)]] (157)

⇒ [ċ(t)
k̇(t)] = [

ϕ1[c∗, k∗]
ϕ2[c∗, k∗]] + [

ϕ1c ϕ1k
ϕ2c ϕ2k

] ∣c∗,k∗ [
c(t) − c∗
k(t) − k∗] (158)

= [0
0
] + [ o

F ′′(k∗)
θ

c∗

−1 ρ
] [c(t) − c

∗

k(t) − k∗] (159)

The above deduction use the following conclusions
⎧⎪⎪⎨⎪⎪⎩

F ′(k∗) − (δ + ρ) = 0⇒ F ′(k∗) = ρ + δ⇒ k∗

c∗ = F (k∗) − δk∗ ⇒ c∗
(160)
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Because ...

Ax = λx (161)
⇒ λ2 − tr(A)λ + dt + λ = 0 (162)

⇒ λ2 − ρλ + F
′(k∗)
θ

⋅ c∗ = 0 (163)

⇒ λ1 =
ρ −
√
ρ2 − 4F ′′(k∗)c∗

θ
< 0 < λ2 =

ρ +
√
ρ2 − 4F ′′(k∗)c∗

θ
(164)

⇒We choose the negative one which is λ1 so that k(t) can converge over time

⇒ k̇(t) = λ1[k(t) − k∗] (165)

⇒ k(t) = k∗ + eλ1t[k(0) − k∗] (166)

Linearization, method of undetermined coefficients
The second approach is method of undetermined coefficients

ċ(t) = F
′′(k∗)
θ

c∗ = 0 (167)

k̇(t) = ρ[k(t) − k∗] − [c(t) − c∗] (168)

⇒ k̈(t) = ρk̇(t) − ċ(t) (169)

= ρk̇(t) − F
′′(k∗)
θ

⋅ c∗[k(t) − k∗] (170)

We can make an assumption that k̇(t) = λ[k(t) − k∗], which is a differential equation in nature

⇒ k̈(t) = λk̇(t) (171)
= λ2[k(t) − k∗] (172)

= ρk̇(t) − F
′′(k∗)c∗[k(t) − k∗]

θ
(173)

= λ2 − ρλ + F
′′(k∗)c∗[k(t) − k∗]

θ
= 0 (174)

⇒ λ1 =
ρ −
√
ρ2 − 4F ′′(k∗)c∗

θ
< 0 < λ2 =

ρ +
√
ρ2 − 4F ′′(k∗)c∗

θ
(175)

Samewise

⇒ k(t) = k∗ + eλ1t[k(0) − k∗] (176)

Note 13 (convergence in Ramsey model). Recall Solow model’s chapter of convergence speed and
time, we can compare the two similar results:

⎧⎪⎪⎨⎪⎪⎩

Ramsey: k(t) = k∗ + eλ1t[k(0) − k∗]
Solow: k(t) = k∗ + e[g′(k∗)t][k(0) − k∗]

(177)

Meaning the λ we are trying to derive here is the convergence speed.
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4.5 Maximizing welfare
Similiar to the concept of golden rate in Solow model, Ramsey model also provide a glimpse of maximized
consumption.
At the steady state

c∗ = F (k∗) − δk∗ (178)
⇒ k∗gold = argmax

k∗
c∗ (179)
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5 OLG Model
In contrast to the Ramsey model in which individuals are infinitely-lived, in the OLG model individuals live
a finite length of time, long enough to overlap with at least one period of another agent’s life.

Note 14 (Meet only once). Two generation OLG is particularly simple because it precludes intertem-
poral trade (no one meets twice).

Solow model, RCK model and OLG model

• All of them are under the assumption of perfect competitive market.
• Solow model has exogenous saving rate, whereas Ramsey model and OLG model has endogenous one.
• OLG model has heterogeneous representative agents.

5.1 Assumptions

Ct = LtC
young
1t +Lt−1C

old
2t (where subscript 1 and 2 stands for age) (180)

Lt = (1 + n)Lt−1 ⇒ Lt = (1 + n)tL0 (181)
St = stL(t) (182)

5.2 UMP of household
A general UMP would be

maxu(C1) + βu(C2,t+1)

s.t.

⎧⎪⎪⎨⎪⎪⎩

C1t + St ⩽Wt

C2,t+1 ⩽ Rt+1St

(183)

Form a Lagrangian and acquire Euler’s equation

L = u(C1) + βu(C2,t+1) + λ1t(c1t + st −wt) + λ2,t+1(c2,t+1 −Rt+1st) (184)

⇒ F.O.C.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L
∂C1t

= 0
∂L

∂C2,t+1
= 0

∂L
∂St
= 0

⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′(C1t) = λ1t
β′u′(C2,t+1) = λ2,t+1
λ1t

λ2,t+1
= Rt+1

(185)

⇒ u′(C1t) = βRt+1u
′(C2,t+1) (Euler’s equation in OLG UMP) (186)
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e.g. Given a specific utillity function

u(Cgt) =
C1−θ

gt − 1
1 − θ ,0 < θ ≠ 1, g = 1,2 (187)

UMP⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C−θ1t = βRt+1C
−θ
2,t+1

C1t =Wt − St

C2,t+1 = Rt+1St

(188)

⇒ (Wt − St)−θ = βRt+1(Rt+1St)−θ (189)

⇒ (Wt − St

St
)−θ = βR1−θ

t+1 (190)

⇒ Wt

St
= (βR1−θ

t+1 )−
1
θ + 1 (191)

⇒ St =
wt

β−
1
θR
−

1−θ
θ

t+1 + 1
< wt (192)

⇒ S′w =
1

β−
1
θR
−

1−θ
θ

t+1 + 1
∈ (0,1) (193)

⇒ S′R =
1 − θ
θ

St

β−
1
θR
−

1−θ
θ

t+1 + 1
(βRt+1)−

1
θ (194)

⇒ S′R

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

> 0,0 < θ < 1
= 0, θ = 1
< 0, θ > 1

(195)

5.3 PMP of firm
A general PMP would be

max
kt,Lt

πt = Yt −wtLt −RtKt (196)

Since πt =
Πt

Lt
, yt =

Yt
Lt
, kt =

Kt

Lt
,
Kt+1

Lt
= Kt+1

Lt+1

Lt+1

Lt
, st =

St

Lt
(197)

Rearrange in form of per capita

⇒max
Kt

πt = Yt −Wt −RtKt (198)

⇒ F.O.C.
⎧⎪⎪⎨⎪⎪⎩

Rt = f ′(Kt)
Wt = f(Kt) −Ktf

′(Kt)
(199)
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5.4 Dynamics
Looking at the motion equation of capital

Kt+1 − (1 − δ)Kt = It = St = stLt = s(wt,Rt+1)Lt (200)

⇒Kt+1 =
s(wt,Rt+1)

1 + n (201)

⇒Kt+1 =
wt

(β− 1
θR
−

1−θ
θ

t+1 + 1)(1 + n)
(using conditions from UMP and PMP) (202)

⇒Kt+1 =
f(Kt) −Ktf

′(Kt)
(β− 1

θR
−

1−θ
θ

t+1 + 1)(1 + n)
(equation of motion of capital in OLG) (203)

The steady states (intertemporal equilibrium) would be

kt+1 = kt = k∗ (204)

⇒ k∗ = s[f(k
∗

t ) − k∗t f ′(k∗t ), f ′(k∗)]
1 + n (205)

= f(k∗t ) − k∗t f ′(k∗t )
(β− 1

θ f ′(∗)− 1−θ
θ + 1)(1 + n)

(206)

⇒ kt+1 =
(1 − α)(k∗)α

(β− 1
θ [α(k∗)α−1]− 1−θ

θ + 1)(1 + n)
(capital per capita at steady state in OLG) (207)

⇒ k∗ = ⋅ (thus we have the k at steady state) (208)

e.g., For a utillity function u = log c1t + β log c2,t+1, where θ = 1.

⇒ c2,t+1

c1t
= βkt+1 (209)

⇒ st =
wt

β−
1
θR
−

1−θ
θ

t+1 + 1
(210)

= wt

β−1 + 1 (211)

= β

1 + βwt (meaning the saving is a function of wage, instead of endowment) (212)

⇒ kt+1 =
st

1 + n =
βwt

(1 + β)(1 + n) (213)

= β(1 − αkαt )
(1 + β)(1 + n) (214)

steady state demands kt+1 = kt = k∗ ⇒ k∗ = [ β(1 − α)
(1 + β)(1 + n)]

1
1−α (215)
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5.5 Comparing three models so far

Solow

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Lt = (1 + n)Lt−1
St

Lt
= st = syt = s Yt

Lt

kt+1 = (1−δ)kt+sf(kt)

1+n

(216)

OLG
⎧⎪⎪⎨⎪⎪⎩

Lt = (1 + n)Lt−1

kt+1 = s(wt,Rt+1)
1+n

= s[f(kt)−ktf
′
(kt),f

′
(kt+1)]

1+n

(217)

Ramsey

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lt = (1 + n)Lt−1

kt+1 = f(kt)+ct
1+n

⇒ 0 = F (k∗) − c∗ − ρk∗ ⇒ F ′(k∗G) = δ
u′(ct)

u′(ct+1)
= β[f ′(kt+1) + (1 − δ)]⇒ 1 = ρ[F ′(k∗) + (1 − δ)]⇒ F ′(k∗) = ρ + δ⇒ k∗G > k∗

(218)

5.6 Dynamic inefficiency
Because of the micro-foundations (patience denoted as β = 1

1+ρ
) in Ramsey, there will be no over-

accumulation of capital, avoiding dynamic inefficiency. Whereas in Solow model the inefficiency is in-
evitable. Somehow in OLG model, the dynamic inefficiency returns.
Solow
The model has key equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Y = F (K,L)
I = S = sY
Lt+1 = (1 + n)Lt

kt+1 = (1−δ)kt+sf(kt)

(1+n)
⇐⇒ k̇ = sf(k) − (n + δ)k

(219)

For a certain production y = ka at steady state
use kt+1 = (1−δ)kt+sf(kt)

1+n

⇒ (1 + n)k∗ = (1 − δ)k∗ + sf(k∗) (220)
− (n + δ)k∗ = −sf(k∗) (221)
f(k∗) − (n + δ)k∗ = (1 − s)f(k∗) = c∗ (222)
⇒ c∗ = f(k∗) − (n + δ)k∗ (223)

To maximize welfare at steady state ⇐⇒ max c∗ ⇐⇒ FOC ∶ k∗g = (
n + δ
α
)1−α (224)

also at steady state

(1 + n)k∗ = (1 − δ)k∗ + sf(k∗) (225)

⇒ k∗ = (n + δ
s
)1−α (226)
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for certain α and s it could be

⇒ k∗ < k∗g (227)

meaning there is possible dynamic inefficiency in Solow model
Ramsey
Ramsey has no dynamic inefficiency, here’s why
The model has three key equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lt = (1 + n)Lt−1

kt+1 − (1 − δ)kt = f(kt) − ct
u′(ct)

u′(ct+1)
= β[f ′(kt+1) + (1 − δ)]

(228)

Put kt+1 − (1 − δ)kt = f(kt) − ct at steady state

c∗ = f(k∗) − k∗ + (1 − δ)k∗ = f(k∗) − δk∗ (229)
To maxmize welfare at steady state⇒ FOC: f ′(k∗G) = δ (230)

Put u′(ct)
u′(ct+1)

= β[f ′(kt+1) + (1 − δ)] at steady state resulting

⇒ 1 = β[f ′(k∗) + (1 − δ)] = 1

1 + ρ [f
′(k∗) + (1 − δ)] (231)

⇒ 1 + ρ = f ′(k∗) + 1 − δ (232)
⇒ f ′(k∗) = ρ + δ < f ′(k∗g) (233)
⇒ k∗G > k∗ (234)

Capital per capita at steady state is lower than kgold, meaning it is dynamic efficient.
OLG
OLG in central planner form:

max
∞

∑
t=0

(βs)tLt[u(c1t) + βu(c2,t+1)] (βs is the discount factor)

s.t. c1t +
c2t
1 + n + (1 + n)kt+1 = f(kt)

(235)

Equation of motion of capital per capita at the steady states

c∗ ≡ c∗1 +
c∗2

1 + n = f(k
∗) − (1 + n)k∗ (236)

Since we are maximizing welfare at steady state, let ∂c∗
∂k∗ = 0 to acquire first order condition

⇒ f ′(k∗G) = 1 + n (237)

using production function y = kα at equilibrium

f ′(k∗) = α(k∗)α−1 (238)

= α{[ β(1 − α)
(1 + β)(1 + n)]

1
1−α }α−1 (239)

= α

1 − α
1 + β
β
(1 + n) (240)
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for certain value of α

f ′(k∗) < 1 + n (241)
⇒ f ′(k∗) < f ′(k∗G) (242)
⇒ k∗ > k∗G (243)

Meaning there can be over-accumulation of capital ⇐⇒ suffices dynamic inefficiency possible in OLG
model.
Conclusion

• Due to ad hoc given s, Solow model is unable to assure dynamic efficiency.
• Due to endogenous saving decision and discount factor β, Ramsey model is able to achieve dynamic

efficiency.
• Due to limited life span of individuals, OLG model fails to achieve dynamic efficiency.
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Part II

Models of Fluctuation
In this part, we deal with models that are essentially DSGE models.3

• Real Business Cycle model
• Dynamic New Keynesian model

3See Gao Xu, 2008 for a brief history of DSGE models.
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6 RBC Model
Originated from Kyland and Prescott (1982), Long and Plosser (1983), RBC model shows great empirical
importance. A standard RBC model4 is in nature a Ramsey model with

• Endogenous (but constant in the long run, i.e. n = 0) labor supply
• Stochastic productivity (i.e. real shocks)

Note 15 (Two principles of the RBC theory of business cycles). 1. Money is of little importance in
business cycles.
2. Business cycles are created by rational agents responding optimally to real (not nominal) shocks
- mostly fluctuations in productivity growth, but also fluctuations in government purchases, import
prices, or preferences.

6.1 UMP of household
A typical household entails product-consuming for Ct and labor-providing for Nt. Only in this model, the
agent value leisure Lt = 1 −Nt.
The UMP in RBC model is

max
Ct,Nt,Bt

Et

∞

∑
t=0

βtu(Ct,Nt) (244)

s.t. PtCt +QtBt ⩽ Bt−1 +WtNt +Dt, where
⎧⎪⎪⎨⎪⎪⎩

β ∈ (0,1)
Qt = 1

1+it
is the price per bond bought today

(245)

Form a Lagrangian and acquire FOCs

L = E0

∞

∑
t=0

βt[u(Ct,Nt) + λt(PtCt +QtBt −Bt−1 −WtNt −Dt)] (246)

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂L
∂Ct
= 0⇒ βt[uCt − λtPt] = 0⇒ uCt

EtUc,t+1
= λt

Etλt+1
⋅ Pt

EtPt+1
∂L
∂Nt
= 0⇒ βt[uNt + λtWt] = 0

∂L
∂Bt
= 0⇒ −λtQtβ

t +Etλt+1β
t+1 = 0⇒ βEtλt+1

λt
= Qt ⇒ 1

Qt
= 1 + it

(247)

using these FOCs

⎧⎪⎪⎨⎪⎪⎩

βt[uCt − λtPt] = 0
βt[uNt + λtWt] = 0

⇒ Labor supply equation − uNt

uCt

= Wt

Pt
(248)

Also
⎧⎪⎪⎨⎪⎪⎩

uCt

EtUc,t+1
= λt

Etλt+1
⋅ Pt

EtPt+1

βEtλt+1
λt
= Qt

⇒ Euler’s equation
Qt

β
= Et ⋅

Uc,t+1
Pt+1
Uc,t

Pt

(249)

4For a sound review over the topic of RBC, see Rebelo Sergio. 2005. “Real Business Cycle Models: Past, Present, and Future.” The
Scandinavian Journal of Economics.
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e.g. Let utility function be specific

u(Ct,Nt) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1−σt −1

1−σ
− N1+φ

t

1+φ
, σ ≠ 1

logCt − N1+φ
t

1+φ
, σ = 1

(250)

⇒
⎧⎪⎪⎨⎪⎪⎩

Wt

Pt
= Cσ

t N
φ
t

Qt = βEt ⋅ (Ct+1
Ct
)−σ ⋅ Pt

Pt+1

(251)

6.2 PMP of firm

min
Nt

WtNt⇔max
Yt

PtYt −WtNt (252)

s.t.Yt = AtK
α
t N

1−α
t , α ∈ [0,1) (253)

where
⎧⎪⎪⎨⎪⎪⎩

Yt = AtW
1−α
t

At = Aρα
t−1ϵ

α
t , ϵ

α
t

iid∼ N(0, σϵ
α) (technology shocks)

(254)

⇒ F.O.C.:
Wt

Pt
= (1 − α)AtN

−α
t (labor demand equation) (255)

6.3 Economy described by RBC
The whole economy system is described as the balance of demand and supply

AS

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Yt = AtN
1−α
t (total production function),At = Aρa

t−1e
ϵat (technology shocks)

Wt

Pt
= Cσ

t N
φ
t (labor supply from UMP)

wt

Pt
= (1 − α)AtN

−α
t (labor demand from PMP)

(256)

AD

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Yt = Ct + It (accouting equation)
Qt = βEt(Ct+1

Ct
)−a Pt

Pt+1
(Euler equation from UMP)

Mt

Pt
= Yt

Q−nt
(demand of liquidity)

(257)
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6.4 Log-linearization
Two methods we can transform. 1) The first is

x̂t = lnxt − lnx∗ (258)

= ln ∣ xt
x∗
∣ (259)

= ln ∣1 + xt − x
∗

x∗
∣ (percentage of deviation from stable state) (260)

≈ ln ∣1 + 1

x∗
(xt − x∗)∣ (261)

= xt − x
∗

x∗
(262)

2) Another approach would be

lnx∗ = lnxt − x̃t ⇒ lnxt = lnx∗ + x̃t (263)

⇒ elnxt = xt = enx
∗
+x̃t = x∗ex̂t ≈ x∗(1 + x̂t) (264)

Now we turn to the linearization of RBC model
⎧⎪⎪⎨⎪⎪⎩

yt = at + (1 − α)nt
y = a + (1 − α)n

⇒ ŷt = ât + (1 − α)n̂t (265)

⇒
⎧⎪⎪⎨⎪⎪⎩

ŵt − p̂t = ât + (1 − α)n̂t
ŵt − p̂t = aĉt + ρn̂t

⇒ ŷt = ĉt, mt − p̂t = ŷt − n̂it (266)

Yt = Ct + It (267)

Y ⋅ eŷt = C ⋅ eĉt + I ⋅ eît (268)

Y (1 + ŷt) = C(1 + ĉt) + I(1 + ît) (269)

ŷt =
C

Y
ĉt +

I

Y
ît (270)

at = ρtat−1 + ϵat (271)

1 = Ete
lnβ++ ln 1

Qt
−a(ct+1−ct)−(Pt+1−Pt) (272)

1 = Ete
lnβ++ ln 1

Qt
−a△ct+1−πt+1 (273)

1 = EtI[1 + (it − i) − a(△ct+1 −△ct] − (πt+1 − πt)] (274)
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Therefore a RBC model can be rewritten in linearized log equations

AS:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ŷt = at + (1 − α)n̂t (output)
ŵt − p̂t = at − αn̂t (labor demand)
ŵt − p̂t = act + φn̂t (labor supply)
ât = ρaât−1 + ϵat (technology)

(275)

AD:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ŷt = ĉt (product market clearing)
ĉt = Etĉt+1 − 1

a
(̂it −Etπ̂t+1)

m̂t − p̂t = ŷt − η ⋅ ît (money demand equation; η is interest rate elasticity)
r̂t = it −Etπ̂t+1 (Fisherian equation)

(276)

Note 16 (Exceptation for Expectation). Notice this method does not apply to equations involving
expectations.

Note 17 (RBC has neutrality of money). The final answer of this standard RBC model is not relevant
to any price variable, inferring the model being money-neutral.
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7 DNK Model
DNK is short for Dynamic New Keynesian5

This New keynesian Model contains elements being

• dispersive economy, a continuum of agents
• perfect information
• rational expectations, i.e. Et(Xt+1) = E(Xt+1∣It)
• perfect competitive labor market
• monopolisitc competitive product market, heterogenous products, nominal rigidities

7.1 UMP of household
Two stages of optimization
Goal of UMP is to acquire DIS, which represents demand. Household face two stages of optimization. Since
goods are heterogenous, UMP begins by choosing items i ∈ I .
Stage I: choosing goods
One way to choose products is by method of maximization.

max
Cit

(∫
1

0
C

ϵ−1
ϵ

it di) ϵ
ϵ−1

s.t.∫
1

0
PitCitdi ⩽ Zt

(277)

, in which the ϵ stands for current substitute elasticity and ϵ−1
ϵ

is contemporaneous elasticity of substitution.
And Zt stands for endowment.
The other way to choose products is by method of minimization. In this case Lagrangian multiplier could be
shadow price.

min∫
1

0
PitCitdi

s.t.(∫
1

0
C

ϵ−1
ϵ

it di) ϵ
ϵ−1 ⩾ Ct

(278)

Form a Lagrangian, we would have

L
{Cit}

= ∫
1

0
PitCitdi + Pt[(∫

1

0
C

ϵ−1
ϵ

it di) ϵ
ϵ−1 −Ct] (279)

⇒ Pit = Pt
ϵ

ϵ − 1((∫
1

0
C

ϵ−1
ϵ

it di) ϵ
ϵ−1−1)ϵ − 1

ϵ
C

ϵ−1
ϵ −1

it (280)

⇒ Pit = Pt[(∫
1

0
C

ϵ−1
ϵ

it di) ϵ
ϵ−1 ) 1

ϵ ]C
−1
ϵ

it (281)

⇒ Pit

Pt
= (Cit

Ct
) −1ϵ (282)

⇒ Cit = (
Pit

Pt
)−ϵCt (the demand curve) (283)

5This chapter is mainly based on the Gali, 2015.
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From ∫
1
0 PitCitdi = PtCt we have

⇒ ∫
1

0
Pit(

Pit

Pt
)−ϵCtdi = PtCt (284)

⇒ ∫
1

0
Pit(

Pit

Pt
)−ϵdi = Pt (285)

⇒ Pt = (∫
1

0
P 1−ϵ
it di) 1

1−ϵ (the expression of total price level) (286)

Apparently

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
Cit

( 1
I

I

∑
i=1
C

1
1+nt

it )1+nt = Ct

s.t.
I

∑
i=1
PitCit ⩽ Zt

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
Cit

I

∑
i=1
PitCit

s.t.( 1
I

I

∑
i=1
C

1
1+nt

it )1+nt) ⩾ Ct

are the same. But as men-

tioned before, the minimization approach is commonly prefered.
Using either approach, we can conduct the result that demand curve and expression of total price level being

Cit = (I ⋅
Pit

Pt
)

1+nt
−∧t Ct (287)

Pt = I(
1

I

I

∑
i=1

P
1
−∧t
it )

−∧t (288)

After picking products, we enter stage II, UMP at period t

max
Ct,Nt,

Mt
Pt

E0

∞

∑
t=0

βtu(Ct,Nt,
Mt

Pt
)← (MIU)

s.t.∫
1

0
PitCitdi +Mt +Bt ⩽Mt−1 + (1 + it−1)Bt−1 + ∫

1

o
WitNitdi + Tt

(289)

constraint of this UMP can be rewritten as

max
Ct,Nt,

Mt
Pt

E0

∞

∑
t=0

βtu(Ct,Nt,
Mt

Pt
)

s.t. PtCt +Mt +Bt ⩽Mt−1 + (1 + it−1)Bt−1 +WtNt + Tt
(290)

Note 18 (Subscript it and t). Cit ≠ Ct ⇔ Monopolistic competitive goods market; Nit = Nt ⇔
Perfect competitve labor market

Form the Lagrangian

L = E0

∞

∑
t=0

βt{u(Ct,Nt,
Mt

Pt
) + λt[PtCt +Mt +Bt −Mt−1 − (1 + it−1)Bt−1 −WtNt + Tt]} (291)

Solving this will deliver the F.O.C.s., resulting

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Qt = βEt ⋅ (uC,t+1
uC,t

Pt

Pt+1
)

Wt

Pt
= −uNt

UCt

1 −Qt = uMt
Pt

(292)

41



This result is basically same as in RBC model with one more equation since money is added to the utility
function.
Linearization
Linearization specificly focusing on the third equation of the second equation, as the other two are identical
in RBC model’s linearization.

1 − 1

1 + it
= Cσ

t (
Mt

Pt
)−ν (using Qt’s defintion) (293)

⇒ it
1 + it

= Cσ
t (
Mt

Pt
)−ν (294)

Taking logs

log
it

1 + it
= σct − ν(mt − pt) (hereafter a lowercase letter x denotes logx) (295)

log
i

1 + i = σc − ν(m − p) (296)

⇒ log( it
1 + it

) − log( i

1 + i) = σĉt − ν(mt − p̂t) (297)

⇒ ν(mt − p̂t) = σĉt + log(
1 + it
it
) − log(1 + i

i
) (298)

⇒ ν(mt − p̂t) = σĉt + [log
( 1+i

i
) + 1

1+i
i

i − (1 + i)
i2

(it − i) − log(
1 + i
i
)] (299)

⇒ ν(mt − p̂t) = σĉt +
i

i + 1
i − (1 + i)

i

it − i
i

(300)

⇒ ν(mt − p̂t) = σĉt −
1

1 + i ît (301)

⇒mt − p̂t =
σ

ν
ĉt −

1

(1 + i)ν ît (302)

⇒mt − p̂t = ĉt − ηît (303)

Note 19 (Must-be in exam: monopolistic competition vs perfect competition). Zero market power to
finite market power, meaning infinite elasticiy to non-zero positive elasticity.

7.2 PMP of firm

Note 20 (Two features DNK firm has). Monopolistic competitive goods market and stikcy price.

7.2.1 Price-setting behavioral equation

We first use PMP to acquire price-setting equation then linearize it. Next we use price-setting equation to
derive NKPC.
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PMP and price-setting behavioral equation
Set base period on the intial period t = 0 for simplicity

max
Pi0

πn
0 = E0

∞

∑
t=0

Q0,t ⋅ (1 − θ)t{Pi0Yit∣0 − [TCn
it∣0(Yit∣0)]}

s.t. Yit∣0 = (
Pi0

Pt
)−ϵYt (since Ct = Yt at equilbrium, the constraint is essentially demand curve)

(304)

∣0 means evaluated at prices from period 0
Yit is total sales of firm i at period t
TC is a function of nominal total cost
Q0,t means discount rate from period 0 to period t
θ means the probability of price adjusting, therefore 1 − θ means the probablity to stay put. It’s sticky price.
6

Solving the PMP by putting demand curve into profit function, it would be

πn
0 = E0

∞

∑
t=0

Q0,t ⋅ (1 − θ)t{Pi0(
Pi0

Pt
)−ϵYt − [TCn

it∣0((
Pi0

Pt
)−ϵYt)]} (305)

then let the F.O.C. be 0 (fig 1,2)

∂πn
0

∂Pi0
= 0 (306)

⇒ E0

∞

∑
t=0

Q0,t ⋅ (1 − θ)t{(1 − θ)(
Pi0

Pt
)−ϵYt − [

∂TCn
it∣0

∂Pit∣0

∂Pit∣0

∂Pi0
] = 0 (307)

⇒ E0

∞

∑
t=0

(1 − θ)tQ0,t[(1 − ϵ)(
Pi0

Pt
)−ϵYt −MCn

it∣0(−ϵ)(
Pi0

Pt
)−ϵ−1Yt

1

Pt
] = 0 (308)

⇒ E0

∞

∑
t=0

(1 − θ)tQ0,t[(1 − ϵ)Yt −MCn
it∣0(−ϵ)(

Pi0

Pt
)−ϵ−1Yt

1

Pt
] = 0 (309)

⇒ E0

∞

∑
t=0

(1 − θ)tQ0,t[(1 − ϵ)Yit∣0 +
ϵ

Pt
MCn

it∣0(
Pi0

Pt
)−1] = 0 (310)

⇒ E0

∞

∑
t=0

(1 − θ)tQ0,tYit∣0[(1 − ϵ) + ϵMCn
it∣0 ⋅ (Pi0)−1] = 0 (311)

⇒ E0

∞

∑
t=0

(1 − θ)t ⋅Q0,t ⋅ Yit∣0 ⋅ (1 − ϵ) = −E0

∞

∑
t=0

(1 − θ)t ⋅Q0,t ⋅ Yit∣0 ⋅ ϵ ⋅MCn
it∣0 ⋅ (Pi0)−1 (312)

⇒ (1 − ϵ)E0

∞

∑
t=0

(1 − θ)t ⋅Q0,t ⋅ Yit∣0 = −ϵ(Pi0)−1E0

∞

∑
t=0

(1 − θ)t ⋅Q0,t ⋅ Yit∣0 ⋅MCn
it∣0 (313)

restore Q0t and Yit∣0 back to demand curve

⇒ (ϵ − 1)E0

∞

∑
t=0

(1 − θ)tβt[(Y0
Yt
)ρP0

Pt
](Pi0

Pt
)−ϵYt = (Pi0)−1E0

∞

∑
t=0

(1 − θ)tβt[(Y0
Yt
)ρP0

Pt
](Pi0

Pt
)−ϵYt ⋅MCn

it∣0

(314)
6For more of price adjusting, see in Calvo, 1983 for uncertain version; Taylor, 1980 for certain version.
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take Pi0 and P0 out since it can be treated as constants

⇒ (ϵ − 1)P −ϵi0 P0Y
σ
o E0

∞

∑
t=0

(1 − θ)tβtP ϵ−1
t Y 1−ρ

t = ϵP −1i0 P
−ϵ
i0 P0Y

ρ
0 E0

∞

∑
t=0

(1 − θ)tβtP ϵ−1
t Y 1−σ

t ⋅MCn
it∣0

(315)

eliminates the underlined common factors on RH and LH

⇒ (ϵ − 1)E0

∞

∑
t=0

(1 − θ)tβtP ϵ−1
t Y 1−ρ

t = ϵE0

∞

∑
t=0

(1 − θ)tβtP ϵ−1
t Y 1−σ

t ⋅MCn
it∣0 (316)

⇒ P ∗i0 =
ϵ

ϵ − 1

E0

∞

∑
t=0
(1 − θ)tβtP ϵ−1

t Y 1−σ
t ⋅MCn

it∣0

E0

∞

∑
t=0
(1 − θ)tβtP ϵ−1

t Y 1−σ
t

(sticky price form price-setting equation) (317)

Also acquiring optimal price p∗, and ϵ
ϵ−1

is cost mutltiplier

⇒ P ∗i0 = P ∗0 =
ϵ

ϵ − 1
[(1 − ϵ)β]0P ϵ−1

o Y 1−σ
0 MCn

0∣0

(1 − θ)0β0P ϵ−1
0 Y 1−σ

0

= ϵ

ϵ − 1MCn
0∣0 (elastic form price-setting equation)

(318)

For elastic form, the intuition is that firms are adjusting price at any time so there is no need to observe profit
based on any specific period. So no summation symbol.

Question 5 (what if price is elastic?).
elasticity means adjusting price at all time. it means price sticky price is 0⇔ 1 − θ = 0.

Note 21. monopolistic competition and elasticity are not the same thing

next try the period-t-based version in textbook (pic 3)

P ∗t =
ϵ

ϵ − 1

Et

∞

∑
k=0
(1 − θ)kβt+kP ϵ−1

t+k Y
1−σ
t+k ⋅MCn

t+k∣t

Et

∞

∑
k=0
(1 − θ)kβtP ϵ−1

t+k Y
1−σ
t+k

(319)

(here the subscript i is gone because all firms are making unanimous decisions)

P ∗t =
ϵ

ϵ − 1MCn
t∣t (320)

Note 22 (CRTS in DNK). if production function is CRTS, then all firms would also be making
unanimous decisions regardless of time period position
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log-linearization of sticky price form price-setting behavioral equation
the method is still first order Taylor expansion, though bit trickier (pic 3, 4, 5)
dividing Pt−1 on both side, and try seperately

P ∗t
Pt−1

Et

∞

∑
k=0

(1 − θ)kβtP ϵ−1
t+k Y

1−σ
t+k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LHS

= 1

Pt−1

ϵ

ϵ − 1Et

∞

∑
k=0

(1 − θ)kβt+kP ϵ−1
t+k Y

1−σ
t+k ⋅MCn

t+k∣t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
RHS

(321)

LHS mutil-variate first order Taylor expansion, the constant term is LHS at steady state where all P are equal

LHS’s 1st order Taylor expansion =
∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ

+ 1

p
Et

∞

∑
k=0

[(1 − θ)β]kP ϵY 1−σ(P
∗

t − P
P

)

− P

P 2
Et

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ(Pt−1 − P
P

)

+ (ϵ − 1)Et

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ(Pt+k − P
P

)

+ (1 − σ)Et

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ(Yt+k − Y
Y

)

(322)

Like before, we use lowercase letters denotes log version

⇒ LHS = P ϵ−1Y 1−σEt

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ[1 + p̂∗t − p̂t−1 + (ϵ − 1)p̂t+k + (1 − σ)ŷt+k] (323)

For RHS,

RHS = ⋅ ⋅ ⋅ = ϵ

ϵ − 1
1

P
P ϵ−1Y 1−σEt

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ[1 − p̂t−1 + (ϵ − 1)p̂t+k + (1 − σ)ŷt+k + m̂cnt+k∣t]

(324)

Note 23 (First order Taylor expansion and steady state). First term (constant term) of 1st Taylor
expansion is steady state

Question 6 (why do we do log-linearization).
to simulate a curve with a line, so there would be a foundable or writable solution.

Now the two sides are log-linearized, let them be in the same equation

P ϵ−1Y 1−σEt

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ[1 + p̂∗t − p̂t−1 + (ϵ − 1)p̂t+k + (1 − σ)ŷt+k]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
log-linear LHS

= (325)

ϵ

ϵ − 1
1

P
P ϵ−1Y 1−σEt

∞

∑
k=0

[(1 − θ)β]kP ϵ−1Y 1−σ[1 − p̂t−1 + (ϵ − 1)p̂t+k + (1 − σ)ŷt+k + m̂cnt+k∣t]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
log-linear RHS

(326)
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Use sticky form price-setting equation at steady state (which because of steadiness looks like elastic form),
we have

MCn

P
= ϵ − 1

ϵ
(327)

Since Et is followed by an infinite series, it is meaningless. Eliminate it.

⇒ p̂∗t��Et

∞

∑
k=0

[(1 − θ)β]k = Et

∞

∑
k=0

[(1 − θ)β]km̂cnt+k∣t (328)

⇒ p̂∗t
1 − (1 − θ)β = Et

∞

∑
k=0

[(1 − θ)β]kMCn
t+k∣t (329)

⇒ p̂∗t = [1 − (1 − θ)β]Et

∞

∑
k=0

[(1 − θ)β]km̂cnt+k∣t (log-linear sticky price setting equation) (330)

Therefore we have the log-linear optimal-price-setting equation for monopolistic competition and sticky price
features firms.

7.2.2 Philips curve

First way to acquire Philips curve
next we use this log-linearized price-setting equation to acquire NK Philips curve
originally PC is about inflation and employment
step I, inflation (p7,8,9)

Pt = I(
1

I

I

∑
i=1

P
1
−∧t
it )

−∧t (expression of total price) (331)

= [∫
θ

0
(P ∗it)1−ϵdi + ∫

1

θ
P 1−ϵ
t−1 di]

1
1−ϵ (θ portion of firms don’t adjust price) (332)

= [θ(P ∗it)1−ϵ + (1 − θ)P 1−ϵ
t−1 ]

1
1−ϵ (expression of total price with θ firms adjusting price) (333)

⇒ P 1−ϵ
t = θ(P ∗it)1−ϵ + (1 − θ)P 1−ϵ

t−1 (334)

⇒ ( Pt

Pt−1
)1−ϵ = θ( P

∗

t

Pt−1
)1−ϵ + (1 − θ) (335)

⇒ Π1−ϵ = θ( P
∗

t

Pt−1
)1−ϵ + (1 − θ) (the capital letter Π is for total inflation

Pt

Pt−1
) (336)

Then log-linearization by bi-variate first order Taylor expansion

⇒ Π1−ϵ + (1 − ϵ)Π1−ϵ(Πt −Π
Π
) = {θ(P

P
)1−ϵ + θ(1 − ϵ)(P

P
)1−ϵ[ 1

P
(P ∗t − P ) −

P

P 2

(Pt−1 − P )
P

]}1−θ

(337)

Since first term of tay exp is steady state, making Π1−ϵ = 1

⇒ 1 + (1 − ϵ)Π̂t = θ + θ(1 − ϵ)(P̂ ∗t − P̂t−1) + (1 − θ) (338)

⇒ Π̂t = θ(P̂ ∗t − P̂t−1) (339)

⇒ 1

θ
Π̂t = P̂ ∗t − P̂t−1 (340)
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Using price-setting equation, which is related to marginal cost, then production. (making nominal price
combination of real price and p̂t−1)

⇒ 1

θ
Π̂t = [1 − (1 − θ)β]Et

∞

∑
k=0

[(1 − θ)β]k(m̂crt+k∣t + p̂t+k − p̂t−1) (341)

= [1 − (1 − θ)β]Et

∞

∑
k=0

[(1 − θ)β]km̂crt+k∣t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

+[1 − (1 − θ)β]Et

∞

∑
k=0

[(1 − θ)β]k(p̂t+k − p̂t−1) (342)

Let the untouched part be A for simplicity, open the sum so there will be expression of inflation in log-
linearized form

= A + [1 − (1 − θ)β]Et

∞

∑
k=0

[(1 − θ)β]k(p̂t+k − p̂t−1) (343)

= A + [1 − (1 − θ)β]Et{(p̂t − p̂t−1) + [(1 − θ)β](p̂t+1 − p̂t + p̂t − p̂t−1)
+ [(1 − θ)β]2(p̂t+2 − p̂t+1 + p̂t+1 − p̂t + p̂t − p̂t−1) + . . .}

(344)
= A + [1 − (1 − θ)β]Et{[(π̂t + [(1 − θ)β](π̂t+1 + π̂t) + [(1 − θ)β]2(π̂t+2 + π̂t+1 + π̂t) + . . .} (345)
= A +Et{[(π̂t + [(1 − θ)β](π̂t+1 + π̂t) + [(1 − θ)β]2(π̂t+2 + π̂t+1 + π̂t) + . . .}
− (1 − θ)βEt{[(π̂t + [(1 − θ)β](π̂t+1 + π̂t) + [(1 − θ)β]2(π̂t+2 + π̂t+1 + π̂t) + . . .}

(making elimination possible)
(346)

= A +Et{π̂t + [(1 − θ)β](π̂t+1 + π̂t) + [(1 − θ)β]2(π̂t+2π̂t+1 + π̂t) + . . .}
− [(1 − θ)β]{π̂t − [(1 − θ)β]2Et(π̂t+1 + π̂t) − . . .}

(347)

Make format simple by doing iteration form, the first term is when k = 0, but the second still starts from k=0
so there will be some parameters changed

= [1 − (1 − θ)β]Et

∞

∑
k=0

m̂crt+k∣t +Et

∞

∑
k=0

π̂t+k+1 (348)

= [1 − (1 − θ)β]mcrt+k∣t + πt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k=0

+[1 − (1 − θ)β]Et

∞

∑
k=0

[(1 − θ)β]k+1m̂crt+k+1∣t +Et

∞

∑
k=0

[(1 − θ)β]k+1π̂t+k

(349)
= [1 − [(1 − θ)β]]m̂crt∣t + π̂t + [(1 − θ)β]{ } (350)

= B (back to recursive form and let it be B) (351)

⇒ 1

θ
π̂t = B (352)

⇒ π̂t =
θ[1 − (1 − θ)β]

1 − θ m̂crt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
effect of current marginal cost

+ βEtπ̂t+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

effect of expectation of future inflation

(New Keynesian Philips Curve marginal cost version)

(353)
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Question 7 (at which variable are we making derivative of Lagrangian function ?).
Theoratically we can make derivative of any variable if possible but not proper.

NKPC has another version where marginal cost is substitued with real output, thus measuring the effect of
output gap.

min
Wt

Pt
Nt

s.t.Yt = AtN
1−α
t

(354)

Form a Lagrangian

⇒L = Wt

Pt
Nt +MCr

t ⋅ (Yt −AtN
1−α
t ) (shadow price can also be marginal cost) (355)

Take partial derivative of Nt here since labor is decided by market, the firm only can control demand of
labor

⇒ ∂L

∂Nt
= 0 (356)

⇒ Wt

Pt
Nt =MCr

t ⋅MPNt , where MPNt =
∂Yt
∂Nt

= (1 − α)AtN
−α
t (357)

⇒MCr
t =

Wt

Pt

MPNt
(358)

m̂cσt = ŵt − p̂t − (at − αn̂t) (log-linearized, and using labor supply equation) (359)
= σĉt + φn̂t − (at − αn̂t) (360)

= σŷt − at − (φ + α)
ŷt − at
1 − α (361)

= σ(1 − α) + (φ + α)
1 − α ŷt −

1 + φ
1 − αat (362)

To acquire natural ratio of output, we use the fact that elastic marginal cost is zero.

⇒ 0 = m̂crt =
σ(1 − α) + (φ + α)

1 − α ŷft −
1 + φ
1 − αat (upscript f stands for flexible meaning elastic) (363)

⇒ 1 + φ
1 − αat =

σ(1 − α) + (φ + α)
1 − α ŷft (364)

⇒ m̂crt =
σ(1 − α) + (φ + α)

1 − α ( ŷt − ŷft
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

≡ỹt, output gap

) (put it back, having the gap of output ŷt − yft = t̃) (365)

If we put the last equation back to NKPC marginal cost version, we connect natural output to inflation which
is NKPC real output version.
New Keynesian Philips Curve marginal cost version:

π̂t =
θ[1 − (1 − θ)β]

1 − θ ˆ
σ(1 − α) + (φ + α)

1 − α (ŷt − ŷft )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effect of current output gap

+ βEtπ̂t+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

effect of expectation of future inflation

(366)
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another way to acquire the NKPC is to concern monopolistic competition, then sticky price.

max
Pit

πr = Pit

Pt
Yit −

Wt

Pt
Nit (367)

⇒ Pit

Pt
= ϵ

ϵ − 1MCr
t (368)

Note 24 (indicator of monopolistic competition).
ϵ

ϵ−1
means monopolistic competition

integral means perfect competitive labor supply for households
ϵ is subtitute elasticity

This is real price, where ϵ is subtitute elasticity. Here MCi comes without subscript t is because of CRTS
production function.

⇒ Pit

Pt
= ϵ

ϵ − 1
Wt/Pt

At
(369)

= ϵ

ϵ − 1
Y σ
t N

φ
t

At
(370)

= ϵ

ϵ − 1
Y σ
t

At
(∫

1

0
Nitdi)φ (because of goods market p.c.) (371)

= ϵ

ϵ − 1
Y σ
t

At
[∫

1

0
(Yit
At
)di]φ (based on CRTS production function) (372)

= ϵ

ϵ − 1
Y σ
t

A1+φ
t

[∫
1

0
(Pit

Pt
)−ϵYtdi]φ (using demand curve and move At out) (373)

= ϵ

ϵ − 1
Y σ
t

A1+φ
t

(P
∗

it

Pt
)−ϵφ (star means symmetric and at equil) (374)

Since at equilibrium all prices are same

P ∗it = P ∗t ⇒
P ∗it
Pt
= ϵ

ϵ − 1
Y σ+φ
t

A1+φ
t

(P
∗

t

Pt
)−ϵφ (375)

Let’s consider a situation that

If P ∗t = Pt (meaning when price elastic) (376)

1 = ϵ

ϵ − 1 (377)

⇒ Y f
t or ŷft (to be log-linearized) (378)

Taking logs

(1 + ϵφ)(P ∗t − Pt) = ln
ϵ

ϵ − 1 − (1 + φ)at + (σ + φ)yt (379)

= (σ + ϕ)yt − (1 + ϕ)at + ln(
ϵ

ϵ − 1) (change order) (380)
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Change order for furthur preparation

⇒ P ∗t = Pt +
σ + φ
1 + ϵφyt −

1 + φ
1 + ϵφat +

1

1 + ϵφ ln( ϵ

ϵ − 1) (381)

⇒ P ∗ = P + σ + φ
1 + ϵφyt − 0 +

1

1 + ϵφ ln( ϵ

ϵ − 1) (steady state by definition) (382)

Two equations above deducted, having the log-linearized result; elastic price means p∗t = p̂t

p̂∗t = p̂t +
σ + φ
1 + ϵφ ŷt −

1 + φ
1 + ϵφat (383)

P ∗t = p̂t (elastic price gives y a f upscript) (384)

⇒ 0 = σ + φ
1 + ϵφ ŷt −

1 + φ
1 + ϵφat (385)

⇒ ŷft =
1 + φ
σ + φat (386)

here notice natural output is a function of technology

⇒ p̂∗t = p̂t +
σ + φ
1 + ϵφ ŷt −

σ + φ
1 + ϵφ ŷ

f
t (387)

⇒ p̂∗t = p̂t + γ(ŷt − ŷft ) (γ denotes the bundle of coefficients) (388)
⇒ p̂∗t = p̂t + γỹt (acceptable price-setting euqation with only assumption of m.c.) (389)

7

Note 25 (DNK model is perfect information rational expectation). Here Et is not Ēt because of
perfect information rational expectation

Second way to acquire NKPC

Note 26 (Price adjusting in certainty vs in randomness).
Price adjusting in certainty Taylor, 1978; price adjusting in randomness, Calvo, 1983
Taylor
a, b and c denotes three firms in a monopolistic competitive market. they adjust price by turns and
one person per period.
Q1: how does one choose price
P△A = 3

, the upscript △ stands for staying put in the next three periods.
Q2: what is the total price
Pt =
Calvo
each firm adjust price at probablity θt at period t.

7see Mankiw and Reis 2002 for more details of acceptable price-setting eq
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Now sticky price price-adjusting equation 8

p̂△t = (1 − θβ)
∞

∑
k=0

(θβ)kEtP
∗

t+k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
weighted average

(390)

⇒p̂△t = (1 − θβ)p̂∗t + θβEtp̂
△

t+1 (sticky PAE) (391)

The θ is the opposite of the one in previous PAE, here rather is to stay put. price adjusting based on acceptable
price setting eq in future periods, β mean subjective discount.
With the expression of total price being

⇒ p̂t = (1 − θ)
∞

∑
k=0

θkp̂△t−k (392)

⇒ p̂t = (1 − θ)p̂△t + θp̂t−1 (expression of total price based on APSE and PAE) (393)

Based on Acceptable Price-setting Equation (from monopolistic competition) and Total Price (from sticky
price), one can quickly conduct NKPC.

Note 27 (prices in DNK).
starred price means acceptable price, triangled price means adjusting price

From the first equation p̂t = (1 − θ)
∞

∑
k=0

θkp̂△t−k we have

p̂t = (1 − θ)P△t + θPt−1 (394)
⇒ (1 − θ)P△t = p̂t − θp̂t−1 (395)
⇒ (1 − θ)EtP

△

t+1 = Etp̂t+1 − θp̂t (396)

⇒ (1 − θ)βEtP̂
△

t+1 = βEtp̂t+1 − θβp̂t (397)

From the second equation p̂t = (1 − θ)p̂△t + θp̂t−1, first use sticky price price-adjusting equation p̂△t =
(1 − θβ)p̂∗t + θβEtp̂

△

t+1 to substitute

⇒ p̂t − θp̂t−1 = (1 − θ)p̂△t = (1 − θ)(1 − θβ)p̂∗t + (1 − θ)θβEtP
△

t+1 (398)

then use APSE p̂∗t = p̂t + γỹt to substitute

⇒ p̂t − θp̂t−1 = (1 − θ)(1 − θβ)(p̂t + γỹt) + (1 − θ)θβEtP
△

t+1 (399)

use the conclusion (1 − θ)EtP
△

t+1 = Etp̂t+1 − θp̂t above

⇒ p̂t − θp̂t−1 = (1 − θ)(1 − θβ)(p̂t + γỹt) + θβEtp̂t+1 − θ2βp̂t (400)
⇒ [1 + θ2β − (1 − θ)(1 − θβ)]p̂t − θPt−1 = (1 − θ)(1 − θβ)γỹt + θβEt (break APSE) (401)
⇒ [1 + θ2β − (1 − θ)(1 − θβ)]p̂t − θPt−1 − θβp̂t = (1 − θ)(1 − θβ)γỹt + θβ(Etp̂t+1 − p̂t) (402)

⇒ θ(p̂t − p̂t−1) = (1 − θ)(1 − θβ)γỹt + θβ(EtP̂t+1 − p̂t) (match terms so there is inflation) (403)
⇒ θπ̂t = (1 − θ)(1 − θβ)γỹt + θβEtπ̂t+1 (here comes inflation) (404)
⇒ π̂t = kŷt + βEtπ̂t+1 (NKPC) (405)

8See more in Calvo, 1983
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7.2.3 Dynamic IS curve

Recalling that household

ŷt = Etŷt+1 −
1

σ
(̂it −Etπ̂t+1) (406)

⇒ ŷft = Etŷt+1 −
1

σ
(̂it − 0) (inflation elastic form is assumed as 0) (407)

⇒ ỹt = Etỹt+1 −
1

σ
(̂it −Etπ̂t+1) (dynamic IS curve, DIS) (408)

7.3 Equilibrium of model
Now NKPC and DIS each represents supply and demand. The two equations have three unkown variables
π̂t, ỹt, ît, applying the model does not have a solution. It is so that we need to add another variable into the
model. There are two ways making DNK model solvable, if not monetary supply rule then Taylor rule.

7.3.1 DNK with money supply rule

DNK

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π̂t = βEtπ̂t+1 + kỹt (NKPC)
ỹt = Etỹt+1 − 1

σ
(̂it −Etπ̂t+1) (DIS)

m̂t = p̂t + ŷt − ηît (Money supply rule, used to be ad hoc in RBC)
(409)

Seems now three equations have even more unkown variables π̂t, ỹt, ît, p̂t,mt.
But hat πt, p̂t are the same thing because

π̂t = p̂t − p̂t−1 (410)
⇒ p̂t = π̂t + p̂t−1 (411)
⇒ m̂t = ϵ̂t (412)

this transfer works either way.
Let the mt money supply be exogenous for simplicity.

Note 28 (Exogenous variables in DNK model). Only technology and money supply are considered
real exogenous variables here.

So we are left with three equations and three unkowns, the model is now solutionable. The final result will
be a function of mt.
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7.3.2 DNK with interest rate rule

DNK

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π̂t = βEtπ̂t+1 + kỹt (NKPC)
ỹt = Etỹt+1 − 1

σ
(̂it −Etπ̂t+1) (DIS)

ît = ϕππ̂t + ϕy ŷt + νt (Interest rate rule)
(413)

where νt = ρvνt−1 + ϵνt is the exogenous shock of interest rate, with the feature of AR1 (414)

Note 29 (Interest rate rule).

ît = ϕπ ⋅ (π̂t − π̂∗) + ϕy ⋅ (ŷt − yft ) + νt (415)

If the target parameters π̂∗ and yft are given, it is Taylor Rule.
Operation parameters ϕπ and ϕy are decided based on past experience.

Acquiring equilibrium and prove it is the only equilibrium
Rewrite the DIS

⇒ ỹt = Etỹt+1 −
1

σ
[(ϕππ̂t + ϕy ŷt + νt) −Etπ̂t+1] (apply interest rate rule to the second equation) (416)

= Etỹt+1 −
1

σ
{[ϕπ ⋅ (βEtπ̂t+1 + kỹt) + ϕy ŷt + νt] −Etπ̂t+1} (put the first in) (417)

= Etỹt+1 +
1 − βϕπ

σ
Etπt+1 −

ϕπk + ϕy
σ

ỹt −
νt
σ

(418)

= 1

σ + ϕπk + ϕy
[σEtỹt+1 + (1 − βϕπ)Etπ̂t+1 − νt] (the relationship of yt and yt+1 and πt+1) (419)

Similarly we can change the NKPC

π̂t =
1

σ + ϕπk + ϕy
{kσEtỹt+1 + [k + β(σ + ϕy)]Etπ̂t+1 − νt} (420)

Therefore three equations are two now.
Iteration in vector form

[ỹt
π̂t
] = 1

σ + ϕπk + ϕy
[ σ 1 − βϕπ
kσ k + β(σ + ϕy)

] [Etŷt+1
Etπ̂t+1

] − 1

σ + ϕπk + ϕy
[1
k
]νt (421)

⇒ [ỹt
π̂t
] = A [Ct−1

Kt−1
] −Bνt (at RHS one period ahead meaning the whole equation is foresight-seeing)

(422)

⇒ λ2 − σ + k + β(σ + ϕy)
σ + ϕπk + ϕy

λ + σβ

σ + ϕπk + ϕy
= 0 (423)

Note 30 (Technique in Ramsey and DNK).
From the perspective of techniques in persuiing solution, it is greatly similar to the way we did with
Ramsey model, where the model is one period backward at RHS.
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Note 31 (HNKPC). Hybrid New Keynesian Philips Curve
Since NKPC lacks persistence in practical use (shocks are too slow to effects), we might as well add a
1-period-lagged inflation to the RHS as adpative expectation. This is somehow a nominal shock since
it gets into the DNK model through mt.

π̂t = βEtπ̂t+1 + kỹt (NKPC) (424)
π̂t = π̂t−1 + βEtπ̂t+1 + kỹt (HNKPC) (425)

at is described as real shocks of DNK model. But it shows up too fast.
Later the concept of sticky information is added to the model to solve the problem.

Note 32 (BK conditions).
First brought up by Blanchard and Kahn, 1980

9

Note 33.
Lasalle, 1986

x2 + bx + c = 0 (426)

x1, x2 < 1 ⇐⇒
⎧⎪⎪⎨⎪⎪⎩

∣c∣ < 1
∣b∣ < 1 + c

(427)

If the equilibrium exists and it is the only one, then

⎧⎪⎪⎨⎪⎪⎩

∣ σβ
σ+ϕπk+ϕy

∣ < 1⇒ σ(β − 1) < 0 < ϕπk + ϕy
∣σ+k+β(σ+ϕy)

σ+ϕπk+ϕy
∣ < 1 + σβ

σ+ϕπk+ϕy
⇒ k(ϕπ − 1) + (1 − β)ϕy > 0

(428)

Method of Undetermined Coefficients:
Let’s assume

⎧⎪⎪⎨⎪⎪⎩

ỹt = ψyννt

π̂t = ψπννt
(429)

recall that

π̂t = βEtπ̂t+1 + kŷt (expected inflation) (430)
9Also see Nakajima 2007 for similar techniques.
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ψπννt = βEt(ψπννt+1) + kŷt (iterating) (431)
= βEt[ψπν(ρννt + ϵνt+1)] + kŷt (expand νt+1 since it’s AR1 shock of it) (432)
= βψπνρννt + kψyννt (preassuming expectation of next period noise is 0) (433)
⇒ (1 − βρν)ψπν = kψyν (434)

⇒ kψyν =
1 − βρν
k

ψπν (relationship of two undetermined coefficients) (435)

Using DIS

ỹt = Etỹt+1 −
1

σ
[ϕππ̂t + ϕy ŷt + νt) −Etπ̂t+1] (436)

using interest rate rule

⇒ ψyννt = ψyνEtνt+1 −
1

σ
(ϕπψπννt + ϕyψyννt + νt − ψπνEtνt+1) (437)

= ψyνρννt −
1

σ
(ϕπψπννt + ϕyψyννt + νt − ψπνρννt) (438)

= σρν − ϕy
σ

ϕyννt −
ϕπ − ρν
σ

ψπννt −
1

σ
νt (439)

⇒ σψyν = (σρν − ϕy)ψyν − (ϕπ − ρν)ψπν − 1 (elimination of νt) (440)
⇒ (σ − (σρν − ϕy))ψyν + (ϕπ − ρν)ψπν = −1 (441)

⇒ ψπν =
−k
. . .
= −k∧ν (442)

⇒ ψyν = −(1 − βρν)∧ν (443)

7.4 Analyze exogenous shocks
Now policy change will reflect in the parameter ϵ, making policy analysis possible.
we use ν to denote the exogenous shock

last section we have expression of ν
}⇒ to analyze the shock would mean fully using it.

Note 34 (what is a shock?).
In a model with uncertainty, variable has the feature of causing change in variation by change itself
can cause a shock.
But it was later broadened as change of exogenous variable in a model without uncertainty.

recall output gap at equilibrium

ŷt − ŷft = ŷ∗t = ψyννt (444)
= −(1 − βρν) ∧ν νt (445)
= −(1 − βρν) ∧ν (ρννt−1 + ϵνt ) (446)
= −(1 − βρν) ∧ν ρννt−1 − (1 − βρν) ∧ν ϵνt (447)
= ρν ỹt−1 − (1 − βρν) ∧ν ϵνt (ỹt−1 backward one period) (448)
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Note 35. we can only do analysis at equil

similiar with inflation at equilibrium

π̂∗t = ψπννt (449)
= −k ∧ν νt (450)
= −k ∧ν (ρννt−1 + ϵνt ) (451)
= ρνπt−1 − k ∧ν ϵνt (452)

interest rate at equilibrium

r̂∗t = ît −Etπ̂t+1 (Real interest rate at equilibrium) (453)
= σ(Etỹt+1 − ŷt)← DIS (454)
= σ(1 − βρν)(1 − ρν) ∧ν νt (455)

⇒ î∗t = r̂t +Etπ̂t+1Nominal interest rate at equilibrium (456)
= [σ(1 − βρν)(1 − ρν) − kρν] ∧ν νt (457)

moreever we can do analysis with money supply using quantity equation of money

m̂∗t = p̂∗t + ŷ∗t − ηî∗t (LHS is solvable since all variables at RHS has been solved) (458)

= (assuming ŷf∗t = 0) (459)
= (460)
= use solutions from above (461)
⇒ (462)
= (463)
dm̂∗t
dνt
= (464)

= showing the result is decided by mutiple joint forces (465)

Note 36 (quantity equation of money). MV = Py
While this theory was originally formulated by Polish mathematician Nicolaus Copernicus in 1517,
it was popularized later by economists Milton Friedman and Anna Schwartz after the publication of
their book, ”A Monetary History of the United States, 1867-1960,” in 1963.

7.5 Optimal monetary policy
A significant paper Mankiw and Reis 2002 used a new keynesian macroeconomic model to acquire the
optimal monetary policy. 10

10N. Gregory Mankiw, Ricardo Reis, Sticky Information versus Sticky Prices: A Proposal to Replace the New Key-
nesian Phillips Curve, The Quarterly Journal of Economics, Volume 117, Issue 4, November 2002, Pages 1295–1328,
https://doi.org/10.1162/003355302320935034
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Note 37 (why is there welfare loss?).
monopoly and sticky price cause deviation from Pareto optimality.

Note 38 (Optimal monetary policy).
No concept of optimality can be found in policy analysis in the perspective of household or firm. But
the government can use welfare loss fucntion in its optimality to maximize social welfare. In the
process of achieving maximized social welfare, the monetary policy is the so-called optimal monetary
policy.

To acquire the optimal monetary policy, the welfare loss function must be previously introduced.
To acquire WLF, we use second order taylor expansion
first order Taylor expansion

Xt −X
X

= lnXt − lnX = xt − x = x̂t (466)

second order Taylor expansion

Xt −X
X

= 1

X
ext − 1

= ( 1
X
ex − 1) + 1

X
ex(xt − x) +

1

2

1

X
ex(xt − x)2

= x̂t +
1

2
x̂2t

(467)

Similarly

⇒
⎧⎪⎪⎨⎪⎪⎩

Ct−C
C
≈ ĉt + 1

2
ĉ2t

Nt−N
N
≈ n̂t + 1

2
n̂2t

(468)

Bi-variate 2o taylor expansion for a utility function where people gain utilities from consuming goods and
enjoying leisure.

u(Ct,Nt) ≈ u(C,N) + uCC(
Ct −C
C
) + uNN(

Nt −N
N

) + 1

2
uC

2

CC

(Ct −C)2
C

+ 1

2
uN

2

NN

(Nt −N)2
N

(469)

= u(C,N) + uCC(ĉt +
1

2
ĉ2t ) + uNN(n̂t +

1

2
n̂2t ) +

1

2
uCCC

2(ĉt +
1

2
ĉ2t ) +

1

2
uNNN

2(n̂t +
1

2
n̂2t ) (470)

= u(C,N) + uCC(ĉt +
1

2
ĉ2t ) + uNN(n̂t +

1

2
n̂2t ) +

1

2
uCCC

2ĉt +
1

2
uNNN

2n̂t (reservate only to 2o)
(471)

= u(C,N) + uCC(ĉt +
1 + uCC

uC
C

2
ĉt) + uNN(n̂t +

1 + uNN

uN
N

2
n̂t) (472)
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⇒ u(Ct,Nt) − u(C,N)
uCC

= (ĉt +
1 + uCC

uC
C

2
ĉ2t ) +

uNN

uCC
(n̂t +

1 + uNN

uN

2
n̂2t ) (473)

∵ ĉt = ŷt (market clearing at equilibrium) (474)

u(Ct,Nt) =
C1−σ

t − 1
1 − σ − N

1+φ
t − 1
1 + φ ⇐⇒

⎧⎪⎪⎨⎪⎪⎩

−uCC

uC
C = σ

−uNN

uN
N = φ

(475)

Note 39 (Coefficients of CES function).
σ is intertemporal substitute elasticy, φ is frisch elasticity

continue to the last taylor expanded eq, introducing vari as the deviation of each firm’s price

. . . = (ŷt +
1 − σ
2

ŷ2t ) +
uNN

uCC
{ 1
α
(ŷt − at) +A ⋅ variPit} +

1 + φ
2
[ 1
α
(ŷt − at) +A ⋅ variPit]2 (476)

= (ŷt +
1 − σ
2

ŷ2t ) +
uNN

uCC

1

α
{[(ŷt − a) +B ⋅ variPit] +

1 + φ
2α
(ŷt − at)2},B ≡ αA (477)

, here let’s ignore many fluctuation terms from taylor expansion as they are extremely small and irrelevant to
monetary policy.

− UN

UC
=MP ⋅N = αANα−1 (478)

= αC
N
⇒ uNN

uCC
= −α (can use this to simplify equation before) (479)

go back to before

⇒ . . . = (ŷt −
1 − σ
2

ŷ2t ) − {(ŷt − at) +B ⋅ variPit +
1 + φ
2α
(ŷt − at)2} (480)

= 1 − σ
2

ŷ2t −B ⋅ variPit −
1 + φ
2α
(ŷt − at)2 (481)

= 1 − σ
2

ŷ2t −B ⋅ variPit −
1 + φ
2α
(ŷ2t − 2ŷtat + a2t ) (482)

= (1 − σ
2
+ 1 + φ

2α
)ŷ2t +

σ + φ
α

ŷtat −B ⋅ variPit (483)

= α(1 − α) + 1 + φ
2α

ŷ2t +
σ + φ
α

ŷtŷ
f
t −B ⋅ variPit (remember when we work out the ŷft ) (484)

= −1
2
[ C(ŷt − ŷft )+
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

deviation from output

D(π̂t − π∗)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

inflation

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
welfare loss

(welfare loss function) (485)

the goal is to minimize the whole term
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Note 40 (paradoxy in welfare loss function).
the two goals are contradicated according to philips curve
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8 Sticky wage model
Before good market is price-sticky and monopolistic competitive, now the setting goes to labor market.

Yit = (
Pit

Pt
)−ϵP Yt (good demand curve, ϵ is substitute elasticity) (486)

Pt = (∫
1

0
P 1−ϵ
it di)

1
1−ϵp (total price) (487)

Wt =Wit = ∫
1

0
Witdi (488)

P ∗it = c + αỹt (desired price) (489)

labor market m.c. (as in classical model) and sticky wage (partial rigidity, in contrary to total rigidity where
all wages are rigid).
1) labor demand curve and total wage price level

min∫
1

0
WjtNijtdj

s.t.At[(∫
1

0
N

ϵW −1
ϵW

ijt dj)
ϵW

ϵW −1 ]1−α ⩾ AtN
1−α
it

(490)

where i indexing firm, j indexing labor, t is time
Form a Lagrangian

L = ∫
1

0
WjtNijtdj +Wt{At[(∫

1

0
N

ϵw−1
ϵw

ijt dj)
ϵW

ϵW −1 ]1−α −AtN
1−α
it } (491)

where Lagrangian multiplier is total wage level
Solving the optimization problem results

⇒
⎧⎪⎪⎨⎪⎪⎩

Nijt = (Wjt

Wt
)−ϵWNit (labor supply equation)

Wt = (∫
1
0 W

1−ϵW
jt dj)

1
1−ϵW (expression of total wage level)

(492)

2) UMP of household
in utility function N is labor demand instead of labor supply as before. this is because of m.c. labor market.

u = u(Ct,Nt)
= u(Ct,{Njt})

= C
1−σ
t − 1
1 − σ − ∫

1

0

N1+φ
j

1 + φ dj (CES style)

(493)

the UMP can be rewritten as

max
{Ct,W

∗
t }

∞

∑
t−0

βtu(Ct,∫
1

0
Njtdj) ⇐⇒ max

∞

∑
t=0

βtu(Ct,∫
1

0
(W

∗

t

Wt
)−ϵWNitdj)

s.t.PtCt +QtBt ⩽ ∫
1

0
W ∗

t (
W ∗

t

Wt
)−ϵWNitdj +Bt−1

(494)
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here W ∗

t instead of original because all wages can be adjusted, eventually they will be the same
a simplified version would be

max
∞

∑
t=0

βtu(Ct, (
W ∗

t

Wt
)−ϵWNit)

s.t.PtCt +QtBt ⩽W ∗

t (
W ∗

t

Wt
)−ϵW +Bt−1 − Tt

(495)

max
W ∗

0

∞

∑
t=0

βtθtWu(Ct∣0,Nt∣0)

s.t.

⎧⎪⎪⎨⎪⎪⎩

Ct∣0 = 1
Pt
[W ∗

0 (
W ∗

0

Wt
)−ϵWNit +Bt−1∣0 − Tt∣0 −Qt−1∣tBt∣0]

Nt∣0 = (W
∗
0

Wt
)−ϵWNit (with labor demand curve, left with only W ∗

0 )

(496)

sticky wage, where θ ≡ Prob(stay put). θ is before utility function because the whole equation is based on
period 0, entailing a prob for the whole eq to stay put.
put two constraints in the max part, now the optimization problem is a unconstrainted one

max
W ∗

0

∞

∑
t=0

(βθW )tu(
1

Pt
[W ∗

0 (
W ∗

0

Wt
)−ϵWNit +Bt−1∣0 − Tt∣0 −Qt−1∣tBt∣0], (

W ∗

0

Wt
)−ϵWNit) (497)

FOC ⇒ E0

∞

∑
t=0

(βθW )t[uC(Ct∣0,Nt∣0)
1

Pt
(1 − ϵW )(

W ∗

0

Wt
)−ϵWNit − uN(Ct∣0,Nt∣0)ϵW (

W ∗

0

Wt
)−(ϵW )

−1 1

Wt
Nit)]

(498)

= E0

∞

∑
t=0

(βθW )t[uC(Ct∣0,Nt∣0)
1

Pt
(1 − ϵW )(

W ∗

0

Wt
)−ϵWW ϵW

t Nit − uN(Ct∣0,Nt∣0)ϵW (
W ∗

0

Wt
)−(ϵW )W ϵW

t Nit
1

W ∗

0

)]

(499)

move some exogenous variables out since they basically can be treated as constants

⇒ (1 − ϵW )(W ∗

0 )−ϵW . . . (500)

= ϵW (W ∗

0 )−ϵ
−1
W (501)

⇒W ∗

0 =
ϵW

1 − ϵW

E0

∞

∑
t=0
(βθW )tuN(Ct∣0,Nt∣0)W ϵW

t Nit

E0

∞

∑
t=0
(βθW )tuC(Ct∣0,Nt∣0) 1

Pt
W ϵW

t Nit

(502)

use marginal substitute ratio, where MRSt∣0 ≡ −
UN (Ct∣0)
UC(Ct∣0)

, the eq is essentially an inflation eq

W ∗

0 =
ϵW

ϵW − 1

E0

∞

∑
t=0
(βθW )tuN(Ct∣0,Nt∣0)MRSt∣0W

ϵW
t Nit

E0

∞

∑
t=0
(βθW )tuC(Ct∣0,Nt∣0) 1

Pt
W ϵW

t Nit

(503)

⇒ W ∗

0

P0
= ϵW
ϵW − 1

MRSt∣0 (if elastic wage and m.c., there will be no eq above) (504)
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now based on the perspective at period t

W ∗

t =
ϵW

ϵW − 1

Et

∞

∑
k=0
(βθW )kuC(Ct+k∣t,Nt+k∣t)MRSt+k∣tW

ϵW
t+k∣t

Et

∞

∑
k=0
(βθW )kuC(Ct+k∣t,Nt+k∣t) 1

Pt+k
W ϵW

t+k∣t

(at t period instead 0 period) (505)

⇒ W ∗

t

Pt
= ϵW
ϵW − 1

MRS (if elasticity wage and monopolistic competitive at t period) (506)

Note 41 (M.C. firm choice variable for optimization problem). MC firm can choose price max or
quantity max
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