第五届中国宏观经济学者论坛

入选文章作者: 邓燕飞、沈吉、张军

预期理论的演变 及其在宏观经济学中的应用

沈吉

北京大学光华管理学院

2024年5月

报告目录

- 研究动机
- 2 预期总览
- 3 从均衡动态看预期的演变
- 4 检验预期理论的实证方法
- 6 研究结论

研究动机

- 预期很重要(为何?)
 - ☞ 经济决策中有不确定性的未来变量
 - ☞ 经济决策中有不确定性的当前变量

• 理论: 廓清预期理论之间的演进关联, 为进一步研究预期奠定基础。

应用:经济发展受预期的影响,为短期扭转"预期偏弱"和中长期"预期管理"的宏观政策提供思路。

预期总览

预期的关键特征:

- 主观或抽象:被认为是经济学与自然科学的核心区别所在 (Evans and Honkapohja, 2001)
- 惯性或黏性(像其他宏观经济变量一样,比如名义变量价格、工资等及实际变量产出、消费等)(Roberts, 1997, 1998; Morris and Shin, 2006; 李拉亚, 2011; 张成思和党超, 2015; etc.)

预期的两大类别:

- 狭义黏性预期理论 (i.e., 理性学习模型)
- 广义黏性预期理论 (e.g., 合理学习模型)

狭义黏性预期

狭义指的是预期黏性由模型内生或指仍是理性预期(较之完全信息理性预期的不完全信息理性预期),又主要有两种:

噪音信息 (Noise Information)如果模型中有不可观测的潜变量,对此潜变量 u,有观测方程:

$$s = u + \zeta, \quad \zeta \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_{\zeta}^2).$$

其中: s 是观测信号, ζ 是信号中的噪音 (假设其为高斯白噪声)。噪音信息模型的关键特征指的是噪音中波动 σ_c^2 外生给定。

● 理性疏忽 (Rational Inattention)

$$s = u + \zeta, \quad \zeta \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_{\zeta}^2).$$

理性疏忽模型的关键特征指的是噪音中的波动 σ_c^2 由模型系统内生。

从外生信息结构到内生信息结构,主要是考虑到经济主体决策时处理信息是有**成本**的,成本收益权衡取舍的结果决定了搜集多少信息或投入多大精力处理信息以得到扣除成本后目标最优对应的最优信息精度。

广义黏性预期

广义指的是预期黏性由模型外生或指偏离了理性预期,也主要有两种:

■ 适应性学习 (Adaptive Learning)

指缺乏关于参数的先验信息,以(完全信息或不完全信息)理性预期均衡解作为可察觉的行动法则,迭代更新参数。

教育性学习 (Eductive Learning)

均衡动态求解

完全信息理性预期 (新古典 vs. 新凯恩斯)

$$\begin{split} \hat{\pi}_t &= \mathbb{E}_{t-1} \hat{\pi}_t + \kappa \tilde{y}_t, \\ m_t &= \hat{p}_t + \tilde{y}_t. \end{split} \right\} \quad \text{vs.} \quad \begin{cases} \hat{\pi}_t &= \mathbb{E}_t \hat{\pi}_{t+1} + \kappa \tilde{y}_t, \\ m_t &= \hat{p}_t + \tilde{y}_t. \end{cases} \end{split}$$

以上不同预期形式的内生变量的均衡解分别为:

$$\begin{cases} \ddot{\pi}_t = \sum\limits_{i=2}^\infty \rho_m^i \epsilon_{t-i} + \left(\rho_m + \frac{1}{1+\kappa}\right) \epsilon_{t-1} + \frac{\kappa}{1+\kappa} \epsilon_t^m & \Leftrightarrow & \mathbb{E}_{t-1} \hat{\pi}_t = \sum\limits_{i=2}^\infty \rho_m^i \epsilon_{t-i}^m + \left(\rho_m + \frac{1}{1+\kappa}\right) \epsilon_{t-1}^m, \\ \ddot{y}_t = \sum\limits_{i=2}^\infty 0 \times \epsilon_{t-i}^m + 0 \times \epsilon_{t-1}^m + \frac{1}{1+\kappa} \epsilon_t^m & \Leftrightarrow & \mathbb{E}_{t-1} \hat{y}_t = 0; \\ \ddot{\pi}_t = \sum\limits_{i=2}^\infty \theta_i \epsilon_{t-i}^m + \theta_1 \epsilon_{t-1}^m + \theta_0 \epsilon_t^m & \Leftrightarrow & \mathbb{E}_t \hat{\pi}_{t+1} = \sum\limits_{i=1}^\infty \theta_i \epsilon_{t+1-i}^m, \\ \ddot{y}_t = \sum_{i=0}^\infty \varphi_i \epsilon_{t-i}^m & \Leftrightarrow & \mathbb{E}_t \hat{\pi}_{t+1} = \sum_{i=1}^\infty \theta_i \epsilon_{t+1-i}^m. \end{cases}$$

表: 通货膨胀的动态乘子

时间序列	滞后预期	前瞻预期
$\hat{\pi}_0$	$\theta_0 = \frac{\kappa}{1+\kappa}$	$\theta_0 = \frac{1 - \lambda}{1 - \lambda \rho_m}$
$\hat{\pi}_1$	$\theta_1 = \rho_m + \frac{1}{1+\kappa}$	$\theta_1 = \frac{(1-\lambda)^2}{1-\rho_m} \left(\frac{1}{1-\lambda} - \frac{\rho_m^2}{1-\lambda\rho_m}\right) - \frac{(1-\lambda)^2}{1-\lambda\rho_m}$
$\hat{\pi}_2$	$\theta_2 = \rho_m^2$	$\theta_2 = (\lambda - 1)(\theta_0 + \theta_1) + \frac{(1 - \lambda)^2}{1 - \rho_m} (\frac{1 - \lambda}{1 - \lambda} - \frac{\rho_m^m}{1 - \lambda \rho_m})$
	-	
•	·	
$\hat{\pi}_t$	$\theta_t = \rho_m^t$	$\theta_t = (\lambda - 1) \sum_{i=0}^{t-1} \theta_i + \frac{(1-\lambda)^2}{1-\rho_m} (\frac{1}{1-\lambda} - \frac{\rho_m^{t+1}}{1-\lambda\rho_m})$

¹ 第 0 期冲击发生后滞后预期系统和前瞻预期系统中各时点的乘数效应。

Cont'd

● 不完全信息理性预期 (理性疏忽 vs. 噪音信息 vs. 粘性信息)

$$\hat{\pi}_t = \mathbb{E}_{t-1}\hat{\pi}_t - \omega(\hat{p}_{t-1} - \mathbb{E}_{t-2}\hat{p}_{t-1}) + \kappa \tilde{y}_t,$$

$$m_t = \hat{p}_t + \tilde{y}_t.$$

$$\text{vs.} \begin{cases} \hat{\pi}_t = (1-\omega)\sum_{i=0}^{\infty} \omega^i \mathbb{E}_{t-1-i}\hat{\pi}_t + \kappa \tilde{y}_t, \\ \\ m_t = \hat{p}_t + \tilde{y}_t. \end{cases}$$

表: 通货膨胀的动态乘子

时间序列	$1-\omega$ 的比例即时更新, ω 的比例滞后 1 期	$(1-\omega)\omega^i$ 的比例滞后 i 期, $i\in[0,\infty)$
$\hat{\pi}_0$	$\theta_0 = \frac{\kappa}{1+\kappa}$	$\theta_0 = \frac{\kappa}{1+\kappa}$
$\hat{\pi}_1$	$\theta_1 = \rho_m + \frac{1-\omega}{1+\kappa}$	$ heta_1 = rac{\kappa ho + heta_0}{\kappa + \omega}$
$\hat{\pi}_2$	$ heta_2 = ho_m^2 + rac{\omega}{1+\kappa}$	$\theta_0 = \frac{\kappa}{1+\kappa}$ $\theta_1 = \frac{\kappa \rho + \theta_0}{\kappa + \omega}$ $\theta_2 = \frac{\kappa \rho^2 + \omega \theta_1}{\kappa + \omega^2}$ $\theta_3 = \frac{\kappa \rho^3 + \omega^2 \theta_2}{\kappa + \omega^3}$
$\hat{\pi}_3$	$\theta_3 = ho_m^3$	$\theta_3 = \frac{\kappa \rho^3 + \omega^2 \theta_2}{\kappa + \omega^3}$
:	:	:
$\hat{\pi}_t$	$ heta_t = ho_m^t$	$\theta_t = \frac{\kappa \rho^t + \omega^{t-1} \theta_{t-1}}{\kappa + \omega^t}$

¹ 第 0 期冲击发生后不同形式的滞后预期系统中各时点的乘数效应。

表: 不完全信息理性预期与完全信息理性预期系统

理性疏忽	噪音信息 噪音的波动外生	黏性信息 一定概率无噪音	完全信息
$\frac{\min_{\substack{\sigma \in \mathbb{N} \\ \sigma_{\mathcal{E}}^{2}}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left[\frac{\tilde{\pi}_{11}}{2} (\hat{p}_{it}^{*} - \hat{p}_{it})^{2} + f(\mu) \right],^{\textcircled{1}}}$	$\hat{p}_t = \int_0^1 \hat{p}_{it} \mathrm{d}i, \hat{\mathcal{Q}}$	$\hat{p}_t = \sum_{h=0}^{\infty} \hat{p}_{it,h},$	$\hat{p}_t = \int_0^1 \hat{p}_{it} \mathrm{d}i,$
$\begin{split} \hat{p}_{it}^* &= \hat{p}_t + \alpha_y \tilde{y}_t, \\ \hat{p}_{it} &= \mathbb{E}[\hat{p}_{it}^* I_i^t], \end{split}$	$\begin{split} \hat{p}_{it}^* &= \hat{p}_t + \alpha_y \tilde{y}_t, \\ \hat{p}_{it} &= \mathbb{E}[\hat{p}_{it}^* I_i^t], \end{split}$	$\begin{split} \hat{p}_{it}^* &= \hat{p}_t + \alpha_y \tilde{y}_t, \\ \hat{p}_{it,h} &= \mathbb{E}_{t-h} \hat{p}_{it}^*, \end{split}$	$\hat{p}_{it}^* = \hat{p}_t + \alpha_y \tilde{y}_t,$ $\frac{\hat{p}_{it}}{\hat{p}_{it}} = \hat{p}_{it}^*,$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\underbrace{\begin{array}{c}s_{it} = m_t + \xi_{it},\\m_t = \hat{p}_t + \tilde{y}_t,\end{array}}_{}-$	$--\frac{s_{it}}{m_t=\frac{m_t}{\hat{p}_t+\tilde{y}_t}}--$	$ \frac{s_{it}}{m_t} = \frac{m_t}{p_t}$ $ -$
$ \frac{\Delta m_t = \Delta m_{t-1} + \epsilon_t}{\log \sigma_{m t-1}^2 - \log \sigma_{m t}^2} \le \mu.$	$\underbrace{\frac{\Delta m_t}{\xi_{it}} = \frac{\Delta m_{t-1}}{\sim} + \frac{\epsilon_t}{N}}_{\text{i.i.d.}} \underbrace{\frac{\Delta m_t}{N} (0, \sigma_{\xi}^2)}. \textcircled{2}$	$-\underbrace{\frac{\Delta}{\epsilon} \frac{m_t}{\text{i.i.d.}}}_{\epsilon_t} \underbrace{\frac{\Delta}{\kappa} \frac{m_t}{t-1} + \frac{\epsilon_t}{2}}_{\mathcal{N}(0, \sigma_{\epsilon}^2). \textcircled{3}}.$	$- \frac{\Delta m_{t}}{I_{i}^{t}} = \frac{\Delta m_{t-1} + \epsilon_{t}}{U_{i}^{t}} - \frac{\Delta m_{t-1} + \epsilon_{t}}{U_{i}^{t}} - \frac{\Delta m_{t-1} + \epsilon_{t}}{U_{i}^{t}} - \frac{\Delta m_{t}}{U_{i}^{t}} - \frac{\Delta m_{t}}{U_{i}^{t}$

① 假设一个线性的注意力成本函数, \diamondsuit $f(\mu) = c\mu$,常数 c > 0。

三种不完全信息理性预期模型在名义冲击后呈现的均衡动态有相似的滞后性和平滑性等特征,但产生的原因及机理不尽相同 (Coibion et al., 2012, 2018a)。假设有一个即日起施行的宽松货币政策,在三大系统中,通胀都将呈"驼峰状":在黏性信息系统中,这是由于部分经济主体并未意识到冲击已经发生并因此调整其判断;在噪音信息系统中,这是因为所有经济主体会接收到通货膨胀将走高的模糊信号,经济主体并不准确掌握公布的信息需要有过滤噪音的过程;在理性疏忽系统中,这是缘自注意力是稀缺资源,处理信息受限而有成本,存在对不同信息投入不同注意力的权衡取舍,有部分经济主体未将注意力放在公布的信息上。

• 有限理性预期 (适应性学习 vs. 教育性学习)

表: 关于学习的有限理性预期系统

推理路径	教育性学习	适应性学习	递归算法
推理始任	*****		地 归异広
简形行为方程	$\hat{\pi}_t = \mu + \alpha \hat{\mathbb{E}}_{t-1} \hat{\pi}_t + \kappa \tilde{y}_{t-1} + \eta_t$	$\hat{\pi}_t = \mu + \alpha \hat{\mathbb{E}}_{t-1} \hat{\pi}_t + \kappa \tilde{y}_{t-1} + \eta_t$	简形行为方程
PLM	$\hat{\pi}_t = c + d\tilde{y}_{t-1} + \eta_t$	$\hat{\pi}_t = c_{t-1} + d_{t-1}\tilde{y}_{t-1} + \eta_t$	PLM
给定初始预期	$\hat{\mathbb{E}}_{t-1}^0 \hat{\pi}_t = c^0 + d^0 \tilde{y}_{t-1}$	$\hat{\mathbb{E}}_{t-1}\hat{\pi}_t = c_{t-1} + d_{t-1}\tilde{y}_{t-1}$	初始预期
ALM	$\hat{\pi}_t = (\mu + \alpha c^0) + (\kappa + d^0)\tilde{y}_{t-1} + \eta_t$	$\hat{\pi}_t = (\mu + \alpha c_{t-1}) + (\kappa + \alpha d_{t-1}) \tilde{y}_{t-1} + \eta_t$	ALM
1 阶预期	$\hat{\mathbb{E}}_{t-1}^1 \hat{\pi}_t = c^1 + d^1 \tilde{y}_{t-1}$	$\phi_{t-1} = (c_{t-1} d_{t-1})'$	待估参数向量
ALM	$\hat{\pi}_t = (\mu + \alpha c^1) + (\kappa + d^1) \tilde{y}_{t-1} + \eta_t$	$\mathbf{z}_{t-1} = (1 \tilde{y}_{t-1})'$	外生观测向量
2 阶预期	$\hat{\mathbb{E}}_{t-1}^2 \hat{\pi}_t = c^2 + d^2 \tilde{y}_{t-1}$	$\phi_{t-1} = \left(\sum_{s=1}^{t-1} \mathbf{z}_{s-1} \mathbf{z}_{s-1}'\right)^{-1} \left(\sum_{s=1}^{t-1} \mathbf{z}_{s-1} \hat{\pi}_s\right)$	OLS
ALM	$\hat{\pi}_t = (\mu + \alpha c^2) + (\kappa + d^2)\tilde{y}_{t-1} + \eta_t$	$\phi_t = \phi_{t-1} + t^{-1} \mathbf{R}_t^{-1} \mathbf{z}_{t-1} (\hat{\pi}_t - \phi'_{t-1} \mathbf{z}_{t-1})$	递归更新
3 阶预期	$\hat{\mathbb{E}}_{t-1}^3 \hat{\pi}_t = c^3 + d^3 \tilde{y}_{t-1}$	$\mathbf{R}_t = \mathbf{R}_{t-1} + t^{-1}(\mathbf{z}_{t-1}\mathbf{z}'_{t-1} - \mathbf{R}_{t-1})$	起归史初
	:	:	
n 阶预期	$\hat{\mathbb{E}}_{t-1}^n \hat{\pi}_t = c^n + d^n \tilde{y}_{t-1}$	$\hat{\mathbb{E}}_t \hat{\pi}_{t+1} = (\mu + \alpha c_t) + (\kappa + \alpha d_t) \tilde{y}_t$	预期演化
理性预期	$\mathbb{E}_{t-1}\hat{\pi}_t = \bar{c} + \bar{d}\tilde{y}_{t-1}$	$\mathbb{E}_{t-1}\hat{\pi}_t = \bar{c} + \bar{d}\tilde{y}_{t-1}$	理性预期
理性预期均衡	$\hat{\pi}_t = \bar{c} + \bar{d}\tilde{y}_{t-1} + \eta_t$	$\hat{\pi}_t = \bar{c} + \bar{d}\tilde{y}_{t-1} + \eta_t$	理性预期均衡

常語類則
$$\begin{cases} \mathbf{y}_t = \mathbf{A} + \mathbf{B} \mathbf{y}_{t-1} + \mathbf{C} \hat{\mathbb{E}}_{t-1} \mathbf{y}_t + \kappa \mathbf{x}_t, \\ \mathbf{x}_t = \rho \mathbf{x}_{t-1} + \epsilon_t. \end{cases}$$
 vs.
$$\begin{cases} \mathbf{y}_t = \mathbf{A} + \mathbf{B} \mathbf{y}_{t-1} + \mathbf{C} \hat{\mathbb{E}}_t \mathbf{y}_{t+1} + \kappa \mathbf{x}_t, \\ \mathbf{x}_t = \rho \mathbf{x}_{t-1} + \epsilon_t. \end{cases}$$

学习类的有限理性理性预期坚持认知一致性原则,虽偏离模型一致的理性预期,但仍将理性预期作为学习的出发点或判断学习方式是否有效的归宿。理性预期均衡解的形式可分别被猜想为(可用待定系数法确定之):

$$egin{cases} \mathbf{y}_t = \mathbf{a} + \mathbf{b} \mathbf{y}_{t-1} + \mathbf{c} \mathbf{x}_{t-1} + \kappa \epsilon_t; \ \mathbf{y}_t = \mathbf{a} + \mathbf{b} \mathbf{y}_{t-1} + \mathbf{c} \mathbf{x}_t. \end{cases}$$

上述均衡解可作为有限理性预期 "可察觉的行为法则" (PLM):

$$\begin{cases} \mathbf{y}_t = \mathbf{a}_{t-1} + \mathbf{b}_{t-1}\mathbf{y}_{t-1} + \mathbf{c}_{t-1}\mathbf{x}_{t-1} + \kappa \boldsymbol{\epsilon}_t; \\ \mathbf{y}_t = \mathbf{a}_{t-1} + \mathbf{b}_{t-1}\mathbf{y}_{t-1} + \mathbf{c}_{t-1}\mathbf{x}_t. \end{cases}$$

用截至第 t-1 期的历史数据可估计出系数 $(a_{t-1},b_{t-1},c_{t-1})$,新增截至第 t 期的数据系数 将调整为 (a_t,b_t,c_t) ,其归位于 PLM 式可得到预期值 $\hat{\mathbb{E}}_{t-1}\mathbf{y}_t$ 或 $\hat{\mathbb{E}}_{t}\mathbf{y}_{t+1}$; 又将该预期表达式代入不同理性预期模型,可得到"实际行为法则"(ALM)。时间推进后将有新数据发布,据此模型参数和基于参数的模型一致预期都将更新,迭代技术常见的是递归最小二乘法(RLS)。对于适应性学习一类的模型,不再适用于参数校准后做脉冲响应分析。但正由于参数因数据而变,预期也随之演变,故此实际数据中观测到的宏观变量在受冲击后的惯性或持续性等特征自然也更易呈现。

其中任一时期的 PLM 的参数集合 $(\mathbf{a},\mathbf{b},\mathbf{c})$ 到 ALM 的参数集合的映射用符号 $T(\mathbf{a},\mathbf{b},\mathbf{c})$ 表示,则 $\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{a},\mathbf{b},\mathbf{c})=T(\mathbf{a},\mathbf{b},\mathbf{c})-(\mathbf{a},\mathbf{b},\mathbf{c})$,通过分析该微分方程的稳定性,可为判断有限理性预期系统的预期稳定性 (Expectationally Stable 或 E-Stable) 提供依据。

实证检验方法

两大类别:有限信息法和完全信息法

表: 有限信息法与完全信息法的比较

实证视角	模型特点	整体潜在风险	互为镜像的优缺点	预期处理	综述性文献
有限信息法	单一方程	方程单一 设定谬误小	精度欠缺 无偏一致估计	预期预测 未来实际 预期调查	Mavroeidis et al. (2014) Coibion et al. (2018a)
完全信息法	联立方程	方程多样 设定谬误大	精度更高 有偏非一致估计	预期预测 未来实际 预期调查	Schorfheide (2013)

预期的测度方式 1: 向量自回归

VAR:

$$\underbrace{ \begin{bmatrix} \hat{\pi}_t \\ \tilde{y}_t \\ \hat{m}c_t \\ \vdots \\ \hat{\pi}_{t-p+1} \\ \hat{y}_{t-p+1} \\ \hat{m}c_{t-p+1} \end{bmatrix}}_{\mathbf{X}_t} \equiv \underbrace{ \begin{bmatrix} \mathbf{x}_t \\ \mathbf{x}_{t-1} \\ \vdots \\ \mathbf{x}_{t-p+1} \end{bmatrix}}_{\mathbf{A} \ \mathbf{X}_{t-1}} + \underbrace{ \Rightarrow \quad \hat{\pi}_t = \underbrace{ \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}}_{\mathbf{e}_\pi'} \underbrace{ \begin{bmatrix} \hat{\pi}_t \\ \tilde{y}_t \\ \hat{m}c_t \\ \vdots \\ \hat{\pi}_{t-p+1} \\ \hat{y}_{t-p+1} \\ \vdots \\ \hat{m}c_{t-p+1} \end{bmatrix}}_{\mathbf{X}_t}$$

如此一来, 滞后理性预期和前瞻理性预期可分别表示为:

$$\begin{split} \mathbb{E}_{t-1-i}\hat{\pi}_t &= \mathbb{E}_{t-1-i}\mathbf{e}_\pi'\mathbf{X}_t = \mathbf{e}_\pi'\mathbf{A}^{i+1}\mathbf{X}_{t-1-i}; \\ \mathbb{E}_t\hat{\pi}_{t+j} &= \mathbf{e}_\pi'\mathbb{E}_t\mathbf{X}_{t+j} = \mathbf{e}_\pi'\mathbf{A}^j\mathbf{X}_t. \end{split}$$

预期的测度方式 2&3: 广义工具变量 & 问卷调查

GIV:

$$\begin{cases} \hat{\pi}_t = \kappa \tilde{y}_t + \beta \hat{\pi}_{t+1} + \overbrace{ -\beta(\hat{\pi}_{t+1} - \mathbb{E}_t \hat{\pi}_{t+1})}^{\textstyle \ddagger \text{未来通胀的} - \text{步预测误差}}, \\ \text{即,第 t+1 期的通胀意外部分} \\ 0 = \mathbb{E}_t [\underbrace{ (\hat{\pi}_t - \kappa \tilde{y}_t - \beta \hat{\pi}_{t+1})}_{\textstyle - \text{步预测误差}}]. \\ - \text{-步预测误差} \end{cases}$$

问卷调查:

$$\begin{cases} \hat{\pi}_t = \kappa \tilde{y}_t + \beta \hat{\pi}^s_{t+1|t} + \overbrace{ -\beta (\hat{\pi}^s_{t+1|t} - \mathbb{E}_t \hat{\pi}_{t+1})}^{\text{未来通胀的}-步调查误差}, \\ \text{即,第 t 期的通胀调查偏离理性预测的部分} \\ 0 = \mathbb{E}_t [\underbrace{(\hat{\pi}_t - \kappa \tilde{y}_t - \beta \hat{\pi}^s_{t+1|t})}_{- \text{步调查误差}} \mathbf{z}_t]. \end{cases}$$

不同内生预期的测度

表: 不同内生预期的测度

	菲利普斯曲线	预期特点	预期测度	代表性文献
有	$\hat{\pi}_t = eta \mathbb{E}_t \hat{\pi}_{t+1} + \kappa_1 \tilde{y}_t$	前瞻理性预期	实际未来值 预期预测值 预期调查值	Roberts (1995)
				Lindé (2005)
				McCallum (1976)
				Sbordone (2002)
				Negro et al. (2020)
				Coibion (2010)
限	$\hat{\pi}_t = \bar{\mathbb{E}}_{t-1}^{si}(\hat{\pi}_t + \alpha \tilde{y}_t) + \kappa_2 \tilde{y}_t$	滞后理性预期		
信	$\hat{\pi}_t = \mathbb{\bar{E}}_{t-1}^{ni}(\hat{\pi}_t + \alpha \tilde{y}_t) + \kappa_3 \tilde{y}_t$	提取信息预期		Coibion et al. (2015)
息	$\hat{\pi}_t = ar{\mathbb{E}}_{t-1}^{ri}(\hat{\pi}_t + lpha ilde{y}_t)$	 选择信息预期	预期调查值	Joo (2020)
	$+\bar{\mathbb{E}}_t^{ri}(\hat{\pi}_{t+1} + \alpha \kappa y_{t+1}) + \kappa_4 \tilde{y}_t$			Afrouzi et al. (2021)
法	$\hat{\pi}_t = \beta \tilde{\mathbb{E}}_t \hat{\pi}_{t+1} + \kappa_6 \tilde{y}_t$	有限理性预期		

¹ Galí and Gertler (1999) 和 Sbordone (2002) 等认为产出缺口不适用于新凯恩斯模型的实证检验,而应用实际边际成本,继而用单位劳动成本作为其 代理变量。

² 学者们经常同时使用不同的预期测度方式以比较研究或进行稳健性检验。McCallum (1976) 首先提出用实际未来值作为预期值的代理变量。

用嵌套模型选择更优的预期理论

单一预期的模型是否设定谬误,可用非嵌套模型进行检验;若要判断哪种 预期占主导地位,则可用嵌套模型:

非嵌套模型检验
$$\begin{cases} \hat{\pi}_t = \beta \mathbb{E}_t \hat{\pi}_{t+1} + \omega_{\text{si}} [\overline{\mathbb{E}_{t-1}^{\text{si}}(\hat{\pi}_t + \alpha \tilde{y}_t) + \kappa_2 \tilde{y}_t]} + \kappa_1 \tilde{y}_t + \epsilon_t, \\ \hat{\pi}_t = \overline{\mathbb{E}}_{t-1}^{\text{si}}(\hat{\pi}_t + \alpha \tilde{y}_t) + \omega_{\text{sp}}(\beta \mathbb{E}_t \hat{\pi}_{t+1} + \kappa_1 \tilde{y}_t) + \kappa_2 \tilde{y}_t + \epsilon_t, \\ \overline{\hat{\pi}_t^{\text{sp}}} \\ \hat{\pi}_t = \omega (\beta \mathbb{E}_t \hat{\pi}_{t+1} + \kappa_1 \tilde{y}_t) + (1 - \omega) [\overline{\mathbb{E}_{t-1}^{\text{si}}(\hat{\pi}_t + \alpha \tilde{y}_t) + \kappa_2 \tilde{y}_t]} + \epsilon_t, \\ \hat{\pi}_t = \omega_1 \underline{\mathbb{E}_t \hat{\pi}_{t+1}} + \omega_2 \underline{\hat{\mathbb{E}}_t \hat{\pi}_{t+1}} + (1 - \omega_1 - \omega_2) \underline{\hat{\pi}_{t-1}} + \kappa \tilde{y}_t + \epsilon_t. \\ \overline{\hat{\pi}_t^{\text{pp}}} \\ \underline{\mathbb{E}_t \hat{\pi}_t \hat{\pi}_{t+1}} + \omega_2 \underline{\hat{\mathbb{E}}_t \hat{\pi}_{t+1}} + (1 - \omega_1 - \omega_2) \underline{\hat{\pi}_{t-1}} + \kappa \tilde{y}_t + \epsilon_t. \end{cases}$$

Cont'd

对于非嵌套模型,就前瞻理性预期模型而言,零假设是 $\omega_{si}=0$; 就滞后理性预期模型,零假设为 $\omega_{sp}=0$,可能的结果是无非是拒绝与接受零假设。这意味着有多种不同形式的预期皆存在的证据,进一步在嵌套模型的检验中,将通过待估参数值的大小、显著性、稳健性等特征以确定占主导地位的预期。不管是哪种设定,就西方过去半个多世纪的样本数据而言,皆认为前瞻理性预期更具统计优势和压倒性地位 (Galí and Gertler, 1999; Coibion, 2010; Nunes, 2010)。

许志伟等 (2015) 基于中国 1992 年至 2012 年相关变量的季度数据,用完全信息 法的贝叶斯结构估计,得到 80% 是非理性的结论,这与西方数据中的实证结果完 全颠倒。鉴于此,从更新数据的时间跨度、增加调查数据、丰富估计方法等方面, 值得进一步探讨中国市场中的预期演变规律。

张成思和党超 (2015) 基于经典的流行病学模型,运用 2001 年 1 季度至 2014 年 4 季度我国居民与专家的通胀预期调研数据,分析了这两组具有代表性的异质性通账预期的预期黏性与预期更新频率,发现居民预期具有很高的黏性专家预期不具有黏性(居民每季度有接近 1/3 的人更新预期而专家每季度都进行预期更新)。

结论和展望

本文根据黏性特征将预期归为狭义和广义两类,常见的划分是理性预期、非理性预期和介于理性非理性之间的有限理性预期这三种。非理性预期具有随意性;理性预期相对理想化,特点是模型一致但相对固化;能刻画预期演变且涉及到预期转移动态问题的前提是有限理性预期。部分经济主体(比如从公众分离出的有充分知识积累和良好专业技能的专家)虽有知识积累、信息处理等方面的优势,但其预期仍不可能做到完全理性,有限理性应更符合其特征。人们应借助自身理论和基于理论的学习优势,选择合适的基准模型,确保从有限理性预期更快向理性预期收敛。

目前国内外一般是在黏性价格等模型的基础上引入适应性学习,但黏性价格模型是完全信息理性预期,而前文介绍的行为经济学中的相关实验表明,有限理性预期会收敛至完全信息理性预期"附近"。正因为如此,若选用完全信息理性预期模型(黏性价格)作为适应性学习的起点,理论模拟的收敛期会明显比现实收敛期更长;而选用不完全信息理性预期(理性疏忽)作为适应性学习的起点,在其他条件相同的前提下收敛速度会加快。为定量验证于此,笔者将另文测算基于理性疏忽引入适应性学习的收敛速度和收敛时长,并将其与基于黏性价格、黏性信息、混合新凯恩斯等模型引入适应性学习计算的收敛时长和收敛速度进行比较。

欢迎批评指正

谢!

谢

并提出宝贵修改意见和建议