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Chapter 1 Static Optimization Problem vs. Dynamic

Optimization Problem

An optimization problem means that selecting one or more independent variables with or without constraints to make
the objective function reach its extreme value, and the result is the value (set) of the choice variable(s) when the objective
function reaches the extreme value.

1.1 Static Optimization Problem

Static optimization problems are divided into two common cases: unconstrained problems and constrained problems.
Constrained problems are further divided into those with equality constraints and those with inequality constraints.

Unconstrained optimization is also called free optimization. Strictly speaking, it does not mean that there is no
constraint on the choice variables, as the domain of the choice vairables is also a constraint if it exists. The word “un-
constrained” here means that there is no constraint between the choice variables of the optimization problem. The choice
variables are also called decision variables.

A single choice variable (hereinafter referred to as “single-variable”) does not have the chance to be tied to other
selection variables, while it is possible that two selection variables (hereinafter referred to as “double-variable”) or more
selection variables (hereinafter referred to as “multi-variable”) are mutually correlated and may increase or decrease at the
expense of each other.

1.1.1 Unconstrained Optimization

We first discusses the necessary and sufficient conditions for the optimization problem when there are no constraints
on the choice variables, including the solution of single-variable and multi-variable unconstrained optimization problems
respectively.

1.1.1.1 Single Decision Variable

Using calculus, the optimization problem of a single choice variable directly takes the derivative of this independent
variable and sets the derivative to 0, which is called the first-order condition. However, this requires that the function
O = 𝑓 (𝑥) is a continuously differentiable smooth curve (excluding constant functions and monotonic functions). The point
where the derivative is 0 may be an “inflection point” (unstable point) or a “stationary point” (stable point). The stationary
point may only be a local, relative extreme value (hereinafter referred to as ”extreme value” or ”local maximum/minimum”),
rather than a global, absolute extreme value (hereinafter referred to as ”global maximum/minimum”). The discussion above
involves at least six problems:

(1) Why exclude constant functions and monotonic functions?

(2) Why should the objective function be continuously differentiable?

(3) How to determine whether it is an inflection point or a stationary point?

(4) How to distinguish whether a stationary point is a local maximum or minimum?

(5) How to know whether it is an maximum or minimum?

(6) How to simply prove that the differentiation method is reasonable?
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1.1 Static Optimization Problem

Problem 1: The value 𝑧 of a constant function is fixed. No matter how the independent variable 𝑥 is chosen, the target
value can never be larger or smaller; The value at the endpoints of a monotonic function with a domain [𝑥1, 𝑥2] are easily
judged as extreme values, which are of course the maximum/minimum. These can be expressed as, respectively:

𝑓 (𝑥) = 𝑧; &


min 𝑓 (𝑥) = 𝑓 (𝑥1),
max 𝑓 (𝑥) = 𝑓 (𝑥2).

Problem 2: The objective function may not be smooth and may have a sharp inflection point (corner point) where
the derivative does not exist, so if the sharp inflection point is an extreme point, it cannot be judged by the derivative.
This chapter focuses on calculus methods, so the basic premise is that the function can be differentiated at all orders; in
other words, the first-order derivative, second-order derivative, third-order derivative, fourth-order derivative, and even
any higher-order derivative are assumed to exist:

𝑓 ′ (𝑥), 𝑓 ′′ (𝑥), 𝑓 (3) (𝑥), 𝑓 (4) (𝑥), . . .

Promlem 3: For a continuously differentiable objective function, the first-order derivative is the slope. If the first-
order derivative is greater than 0, the slope is positive, and if the first-order derivative is less than 0, the slope is negative.
The first-order derivative at the extreme point must be 0, but a point where the first-order derivative is 0 is not necessarily
an extreme point. The slopes on the left and right sides of the extreme point should have opposite signs. If the slopes on
the left and right of the first-order derivative have the same sign when the first-order derivative is 0, it is an inflection point.
Therefore, the first-order derivative of 0 is a necessary condition for the existence of an extreme value, but not a sufficient
condition. This boils down to:

𝑓 ′ (𝑥) = 0



infection point


the same sign


𝑓 ′ (𝑥) > 0 left

𝑓 ′ (𝑥) > 0 right

the same sign

𝑓 ′ (𝑥) < 0 left

𝑓 ′ (𝑥) < 0 right

stationary point


opposite signs


𝑓 ′ (𝑥) > 0 left

𝑓 ′ (𝑥) < 0 right

opposite signs

𝑓 ′ (𝑥) < 0 left

𝑓 ′ (𝑥) > 0 right

Problem 4: The change in the sign of the first-order derivative in the neighborhood of the stationary point helps to
determine the extreme value. The slope on the left side of a local maximum point is positive and the slope on the right side
is negative. The slope on the left side of a local minimum point is negative and the slope on the right side is positive. The
sign of the second-order derivative in the neighborhood of the stationary point can also helps. If the positive slope is getting
slower and slower (the function value increases at a decreasing rate) and the negative slope is getting steeper and steeper
(the function value decreases at an increasing rate), it is a local maximum (the second-order derivative is always less than
0). If the negative slope is getting slower and slower (the function value decreases at a decreasing rate) and the positive
slope is getting steeper and steeper (the function value increases at an increasing rate), it is a minimum (the second-order
derivative is always greater than 0). This comes down to:

extreme values


local maximum


𝑓 ′ (𝑥) > 0, 𝑓 ′′ (𝑥) < 0 left

𝑓 ′ (𝑥) < 0, 𝑓 ′′ (𝑥) < 0 right

local minimum

𝑓 ′ (𝑥) < 0, 𝑓 ′′ (𝑥) > 0 left

𝑓 ′ (𝑥) > 0, 𝑓 ′′ (𝑥) > 0 right

Problem 5: For a continuously differentiable objective function, if the extreme points can all be determined, we can
simply compare the extreme points to determine the global maximum/minimum, but this is quite troublesome, and the
extreme points   may not be easy to exhaust. Another way is that if the concavity or convexity of the objective function

2
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1.1 Static Optimization Problem

are easy to determine, then the local maximum/minimum is also the global maximum/minimum, as objective functions
with concave or convex characteristics are common in optimization problems regarding economics. Concave and convex
functions can be determined according to the definition (in the following definition, 0 < 𝜔 < 1, and 𝑥1, 𝑥2 are any two
points given on the curve), and the second-order derivative of a concave function is ”everywhere” less than 0 and the
second-order derivative of a convex function is ”everywhere” greater than 0, so a concave objective function has a global
maximum and a convex objective function has a global minimum. This boils down to:

global maximum/minimum


global maximum

{
𝜔 𝑓 (𝑥1) + (1 − 𝜔) 𝑓 (𝑥2) ≤ 𝑓 [𝜔𝑥1 + (1 − 𝜔)𝑥2] definition

𝑓 ′′ (𝑥) < 0, ∀𝑥 property

}
convex;

global minimum

{
𝑓 ′′ (𝑥) > 0, ∀𝑥 property

𝜔 𝑓 (𝑥1) + (1 − 𝜔) 𝑓 (𝑥2) ≥ 𝑓 [𝜔𝑥1 + (1 − 𝜔)𝑥2] definition

}
concave.

Only when the second-order derivative has a positive or negative sign can we judge whether it is a maximum or
minimum from above. However, it does not rule out the possibility that the second-order derivative may be 0. In this case,
it still fails to judge whether it is a maximum or a minimum. Therefore, 𝑓 ′′ (𝑥) ≤ 0 or 𝑓 ′′ (𝑥) ≥ 0 and 𝑓 ′ (𝑥) = 0 are
necessary conditions for the existence of extreme values. Why? This is also the reason for the following question.

Problem 6: The derivation of the first-order necessary conditions uses the mean value theorem, and the derivation of
the second-order (or higher) necessary or sufficient conditions uses the Taylor expansion.

i) If O = 𝑓 (𝑥) is continuously differentiable in the domain, and O has an extreme value 𝑓 (𝑥𝑜), then we must have

𝑓 ′ (𝑥𝑜) = 0.

Suppose 𝑥 is in the neighborhood of 𝑥𝑜, that is, 𝑥 ∈ 𝑥𝑜 + Δ𝑥, and suppose 𝑓 (𝑥) ≤ 𝑓 (𝑥𝑜), then we have 𝑓 (𝑥𝑜 + Δ𝑥) ≤
𝑓 (𝑥𝑜), then

𝑓 (𝑥𝑜 + Δ𝑥) − 𝑓 (𝑥𝑜) ≤ 0
Δ𝑥 > 0

≤ 0;

𝑓 (𝑥𝑜 + Δ𝑥) − 𝑓 (𝑥𝑜) ≤ 0
Δ𝑥 < 0

≥ 0.

 ⇒ 𝑓 ′ (𝑥𝑜) =


𝑓 ′+ (𝑥𝑜) ≡ lim

Δ𝑥→0+
𝑓 (𝑥𝑜 + Δ𝑥) − 𝑓 (𝑥𝑜)

Δ𝑥
≤ 0

𝑓 ′− (𝑥𝑜) ≡ lim
Δ𝑥→0−

𝑓 (𝑥𝑜 + Δ𝑥) − 𝑓 (𝑥𝑜)
Δ𝑥

≥ 0

 = 0.

This is Fermat’s lemma. [37] proved this first-order condition in the mathematical appendix directly using the mean
value theorem. Let 𝑥𝑜 be a point in the domain, and 𝑥 = 𝑥𝑜 +Δ𝑥 be another point (Δ𝑥 > 0 or Δ𝑥 < 0), then there is a point
𝜔𝑥 + (1 − 𝜔)𝑥𝑜 = 𝑥𝑜 + 𝜔(𝑥 − 𝑥𝑜), 𝜔 ∈ (0, 1) between 𝑥 and 𝑥𝑜, according to Lagrange’s mean value theorem,

𝑓 ′ (𝑥𝑜 + 𝜔(𝑥 − 𝑥𝑜)) =
𝑓 (𝑥) − 𝑓 (𝑥𝑜)
𝑥 − 𝑥𝑜

⇔ 𝑓 (𝑥) − 𝑓 (𝑥𝑜) = 𝑓 ′ (𝑥𝑜 + 𝜔(𝑥 − 𝑥𝑜)) (𝑥 − 𝑥𝑜).

If 𝑓 ′ (𝑥𝑜) > 0, according to the continuity assumption, there exists an interval |𝑥 − 𝑥𝑜 | < 𝑧 such that 𝑓 ′ (𝑥) > 0 is true
everywhere in the interval. Therefore, for any 𝑥 > 𝑥0, 𝑓 (𝑥)− 𝑓 (𝑥𝑜) > 0, which contradicts the assumption of 𝑓 (𝑥) ≤ 𝑓 (𝑥𝑜).
Similarly, 𝑓 ′ (𝑥𝑜) < 0 will also lead to a contradiction. The first-order necessary conditions for the minimum can also be
roughly proved in this way. Therefore, the necessary condition for the extreme value is 𝑓 ′ (𝑥𝑜) = 0. It can also be expressed
by differential thinking, that is, dO = 𝑓 ′ (𝑥)d𝑥. At the extreme point, any change in 𝑥 (d𝑥 ≠ 0) will not cause a change
in O (dO = 0), then it can only be that 𝑓 ′ (𝑥) = 0. The solution of this equation is 𝑥𝑜, so the condition is equivalent to
𝑓 ′ (𝑥𝑜) = 0�1

We can also proof by contradiction. If at the extreme point, 𝑓 ′ (𝑥𝑜) ≠ 0, then either 𝑓 ′ (𝑥𝑜) > 0, which means that as
𝑥𝑜 increases, the target value will increase; or 𝑓 ′ (𝑥𝑜) < 0, which means that as 𝑥𝑜 increases, the target value will decrease.
In both cases, the target value will not be an extreme value, so the extreme point must have 𝑓 ′ (𝑥𝑜) = 0.

ii) Then let’s see how to derive the necessary or sufficient conditions of the second or higher order. Let the function
O = 𝑓 (𝑥) be expanded in a Taylor series of order 𝑛 ∈ 𝑁+ around 𝑥 = 𝑥𝑜 (the remainder is omitted and 𝑁+ represents the

1See also Theorem 12.1 in [9, p.327] or the rigorous proof of the first-order condition in [Sundaram2001].
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1.1 Static Optimization Problem

set of positive integers)�

𝑓 (𝑥) =

Nonlinear approximation︷                                                                                                                                                   ︸︸                                                                                                                                                   ︷
𝑓 (𝑥𝑜) + 𝑓 ′ (𝑥𝑜)(𝑥 − 𝑥𝑜)︸                        ︷︷                        ︸

Linear approximation

+ 𝑓
′′ (𝑥𝑜)
2!

(𝑥 − 𝑥𝑜)2 +
𝑓 (3) (𝑥𝑜)

3!
(𝑥 − 𝑥𝑜)3 +

𝑓 (4) (𝑥𝑜)
4!

(𝑥 − 𝑥𝑜)4 + · · · +
𝑓 (𝑛) (𝑥𝑜)
𝑛!

(𝑥 − 𝑥𝑜)𝑛 .

(a) We focus on the function value at 𝑥 (𝑥 ≠ 𝑥𝑜) within the neighbourhood of 𝑥𝑜. If the first-order derivative 𝑓 ′ (𝑥𝑜) ≠
0, and the second-order derivative and higher-order derivatives are all 0, then:

𝑓 (𝑥) − 𝑓 (𝑥𝑜) = 𝑓 ′ (𝑥𝑜)(𝑥 − 𝑥𝑜).

If we want to determine whether the function reaches an extreme value when 𝑥 = 𝑥𝑜 (that is, when 𝑓 (𝑥) < 𝑓 (𝑥𝑜) for
any 𝑥 is in the left or right neibourhood of 𝑥𝑜, 𝑥𝑜 is a local maximum point; when 𝑓 (𝑥) > 𝑓 (𝑥𝑜) for any 𝑥 is in the left or
right neibourhood of 𝑥𝑜, 𝑥𝑜 is a local minimum point), it depends on the sign of 𝑓 ′ (𝑥𝑜) (𝑥 − 𝑥𝑜), but it is the product of
𝑓 ′ (𝑥𝑜) and (𝑥 − 𝑥𝑜), so the sign cannot be determined.

But if 𝑓 (𝑥𝑜) is an extreme value, take the maximum value as an example: On the left side of the maximum point,
𝑥 − 𝑥𝑜 < 0 and 𝑓 ′ (𝑥𝑜) > 0; on the right side of the maximum point, 𝑥 − 𝑥𝑜 > 0 and 𝑓 ′ (𝑥𝑜) < 0. It can be seen that there
is always 𝑓 ′ (𝑥𝑜)(𝑥 − 𝑥𝑜) < 0 on both sides of the maximum point. Therefore, 𝑓 ′ (𝑥𝑜) ≠ 0 means that 𝑥 = 𝑥𝑜 is not an
extreme point; in other words, the extreme point must have 𝑓 ′ (𝑥𝑜) = 0.

(b) Since the extreme point must have 𝑓 ′ (𝑥𝑜) = 0, assuming the second-order derivative is 𝑓 ′′ (𝑥0) ≠ 0 and the
third-order derivative and higher-order derivatives are 0. The Taylor expansion is:

𝑓 (𝑥) − 𝑓 (𝑥𝑜) = 0 + 𝑓
′′ (𝑥𝑜)

2
(𝑥 − 𝑥𝑜)2.

Regardless of whether 𝑥 is on the left or right side of 𝑥𝑜, (𝑥 − 𝑥𝑜)2 > 0 always holds true. As long as the second-
order derivative 𝑓 ′′ (𝑥𝑜) > 0, then 𝑓 (𝑥) > 𝑓 (𝑥𝑜), the value 𝑓 (𝑥𝑜) is always smaller than that in the neiborhood so it is a
minimum.

Regardless of whether 𝑥 is on the left or right side of 𝑥𝑜, (𝑥− 𝑥𝑜)2 > 0 always holds true. As long as the second-order
derivative 𝑓 ′′ (𝑥𝑜) < 0, then 𝑓 (𝑥) < 𝑓 (𝑥𝑜), the value 𝑓 (𝑥𝑜) is always larger than that in the neiborhood so it is a maximum.

(c) But what if the first-order derivative 𝑓 ′ (𝑥𝑜) = 0 and the second-order derivative 𝑓 ′′ (𝑥𝑜) = 0? Then the value
𝑓 (𝑥𝑜) and the value 𝑓 (𝑥) where 𝑥 is in the neibourhood of 𝑥0 cannot be compared by expanding to the second-order
term. Assuming that the third-order derivative is not zero ( 𝑓 (3) (𝑥𝑜) ≠ 0), and the fourth-order derivative and higher-order
derivatives are 0, the Taylor expansion is:

𝑓 (𝑥) − 𝑓 (𝑥𝑜) = 0 + 0 + 𝑓 (3) (𝑥𝑜)
3 × 2 × 1

(𝑥 − 𝑥𝑜)3.

Since the sign of (𝑥 − 𝑥𝑜)3 is not determined, the sign of 𝑓 (3) cannot determine the sign of 𝑓 (3) (𝑥𝑜)(𝑥 − 𝑥𝑜)3, so the
value 𝑓 (𝑥𝑜) and the value 𝑓 (𝑥) where 𝑥 is in the neibourhood of 𝑥0 cannot be compared uniformly�So 𝑥 = 𝑥𝑜 is not an
extreme point. Since a point 𝑥𝑜 such that 𝑓 ′ (𝑥𝑜) = 0 is not a stationary point, it must be an inflection point. The derivative
of a derivative is 0, which shows that the derivative itself can be either a maximum or a minimum, which corresponds to
a slightly different inflection point in form.

(d) Recursively, if the first-order derivative 𝑓 ′ (𝑥𝑜) = 0, the second-order derivative 𝑓 ′′ (𝑥𝑜) = 0, the third-order
derivative 𝑓 (3) (𝑥𝑜) = 0, but assuming the fourth-order derivative is 𝑓 (4) (𝑥𝑜) ≠ 0, and the fifth-order derivative and
higher-order derivatives are 0. The Taylor expansion is:

𝑓 (𝑥) − 𝑓 (𝑥𝑜) = 0 + 0 + 0 + 𝑓
(4) (𝑥𝑜)

4!
(𝑥 − 𝑥𝑜)4.

Regardless of whether 𝑥 is on the left or right side of 𝑥𝑜, (𝑥 − 𝑥𝑜)4 > 0 always holds true. As long as the fourth-order
derivative 𝑓 (4) (𝑥𝑜) > 0, then 𝑓 (𝑥) > 𝑓 (𝑥𝑜), the value 𝑓 (𝑥𝑜) is always smaller than that in the neiborhood, so it is a
minimum.
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1.1 Static Optimization Problem

Regardless of whether 𝑥 is on the left or right side of 𝑥𝑜, (𝑥 − 𝑥𝑜)4 > 0 always holds true. As long as the fourth-
order derivative 𝑓 (4) (𝑥𝑜) < 0, then 𝑓 (𝑥) < 𝑓 (𝑥𝑜), the value 𝑓 (𝑥𝑜) is always larger than that in the neiborhood, so it is a
maximum.

By enumerating, the rule can be seen: if the first-order derivative at 𝑥 = 𝑥𝑜, 𝑓 ′ (𝑥𝑜) = 0, then it is an inflection point
or a stationary point. Let the first non-zero derivative value encountered in the second-order or higher-order derivatives
be the 𝑗 th-order derivative, that is, 𝑓 ( 𝑗 ) (𝑥𝑜) ≠ 0. When 𝑗 is an odd number, (𝑥0, 𝑓 (𝑥𝑜)) is an inflection point; when 𝑗 is a
evev number, 𝑓 (𝑥𝑜) is a minimum when 𝑓 ( 𝑗 ) (𝑥𝑜) > 0, and 𝑓 (𝑥𝑜) is a maximum when 𝑓 ( 𝑗 ) (𝑥𝑜) < 0.

The above six problems outline and successively introduce the first-order or higher-order conditions for unconstrained
optimal solutions, but they are still confined to the scope of mathematics. In economics, what needs to be answered is how
to select the choice variables that meet the corresponding economic conditions based on a specific economic environment to
optimize the goals of economic entities. The following three examples respectively present the similarities and differences
of “choice variables” in different structures of perfect competition and in the market environment of perfect competition
and monopolistic competition.

Example 1. Product supply in a perfectly competitive market

In perfect competition, prices are determined by market supply and demand. Neither buyers nor sellers can control
prices. Representative manufacturers choose product sales quantity 𝑄𝑠 (with subscript 𝑠 to indicate supply) to optimize
profits. Profits are defined as revenue after deducting costs. When both product and factor markets are perfectly competi-
tive, revenue and costs are functions of sales, and the objective profit function is

max
𝑄𝑠

Π ≡ R(𝑄𝑠) − C(𝑄𝑠).

Let’s look at the first-order condition first:

dΠ
d𝑄𝑠

= R′ (𝑄𝑠) − C′ (𝑄𝑠) = 0 ⇒

marginal revenue︷  ︸︸  ︷
R′ (𝑄◦𝑠)︸  ︷︷  ︸

MR

=

marginal cost︷  ︸︸  ︷
C′ (𝑄◦𝑠)︸  ︷︷  ︸

MC

.

This results in the equilibrium condition where marginal revenue equals marginal cost, from which the desired product
supply (output level) 𝑄◦𝑠 can be solved. However, the goal of maximizing profits may not be achieved at this point. At the
point where profits are minimized or even continue to rise (an infection point), the revenue from an additional unit of sales
is equal to the cost of an additional unit of sales. Therefore, this is only a necessary condition.

Let’s look at the second-order condition:
d2Π

d𝑄2
𝑠

≡ d
d𝑄𝑠

(
dO
d𝑄𝑠

)
= R′′ (𝑄◦𝑠) − C′′ (𝑄◦𝑠) < 0 ⇒ R′′ (𝑄◦𝑠) < C′′ (𝑄◦𝑠).

That is, when the rate of change of the marginal revenue is less than the rate of change of the marginal cost, it can
ensure that the profit reaches its maximum value (a sufficient condition).

The explicit revenue curve, under perfect competition, is R(𝑄𝑠) = 𝑃𝑄𝑠 , with marginal revenue R′ (𝑄◦𝑠) = 𝑃, and the
change rate of the marginal revenue R′′ (𝑄◦𝑠) = 0. The first- and second-order conditions are:{

C′ (𝑄◦𝑠) = 𝑃,
C′′ (𝑄◦𝑠) > 0.

This shows that the marginal cost at the optimal output level 𝑄◦𝑠 is also the selling price, and the marginal cost at this
point is increasing. Why? If the marginal cost is decreasing at 𝑄𝑠 , then producing one more unit at this time will still
benefit 𝑃, while the marginal cost will be less than 𝑃, so 𝑄𝑠 will not be the optimal choice.

Example 2. Labor demand in a perfectly competitive market

Production activities depend on production factors, and common production factors include technology, capital, and
labor. Omitting technology and exogenous capital, the demand equation for labor as a production factor of representative
manufacturers is derived from profit optimization:
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1.1 Static Optimization Problem

max
𝐿𝑑⇄𝑄𝑠

Π ≡

revenue︷︸︸︷
𝑃𝑄𝑠 −

variable cost︷︸︸︷
𝑊𝐿𝑑 −

fixed cost︷︸︸︷
𝑅𝑃𝐾 .

Both product and factor markets are perfectly competitive. The price level 𝑃, the wage level𝑊 , and the capital rental
rate 𝑅 (equals to the real interest rate 𝑟, which is the difference between the nominal interest rate 𝑖 and the expected inflation
rate 𝜋𝑒, plus the capital depreciation rate 𝛿) are exogenous to the problem of optimizing corporate profits (exogeneity is
indicated in gray). The demand for the production factor of physical or tangible capital 𝐾 is relatively fixed in the short
term, or is considered exogenous. The company only chooses the input factor of labor 𝐿𝑑 (with subscript 𝑑 indicating
demand) to provide output supply 𝑄𝑠 (or the labor demand can be determined by choosing the output�i.e., 𝐿𝑑 ⇄ 𝑄𝑠), to
achieve the optimal profit.

Back to the optimization problem above. Substitute the production function 𝑄𝑠 = 𝐴𝐹 (𝐾, 𝐿𝑑) under the technology
level 𝐴 into the defined profit identity:

max
𝐿𝑑⇄𝑄𝑠

Π ≡ 𝑃𝐴𝐹 (𝐾, 𝐿𝑑) − 𝑅𝑃𝐾 −𝑊𝐿𝑑 ⇔ max
𝐿𝑑⇄𝑄𝑠

Π ≡ 𝑃𝐴𝐹 (𝐾, 𝐿𝑑) −𝑊𝐿𝑑

Nominal capital 𝑃𝐾 and its price (nominal aggregate interest rate) 𝑅 are both exogenous, so removing this term does
not affect the first-order necessary conditions and the optimal choice variables determined by them:

dΠ
d𝐿𝑑

= 𝑃𝐴𝐹𝐿 (𝐾, 𝐿◦𝑑)−𝑊 = 0
labor demand curve
================⇒

real wage︷︸︸︷
𝑊/𝑃 =

marginal product︷         ︸︸         ︷
𝐴𝐹𝐿 (𝐾, 𝐿◦𝑑);

𝑊/𝐴︸︷︷︸
marginal cost

= 𝑃𝐹𝐿 (𝐾, 𝐿◦𝑑)︸         ︷︷         ︸
marginal revenue

desired labor demand
=================⇒ 𝐿◦𝑑 = 𝑓

(
𝑊

𝑃
, 𝐴, 𝐾

)
.

The optimal output is therefore:
𝑄◦𝑠 = 𝐴𝐹 (𝐾, 𝐿◦𝑑).

The functional relationship between the desired demand for labor as a production factor and the optimal output can
be expressed by the inverse function 𝐹−1 as follows:

⇔ 𝐿◦𝑑 =
𝐹−1

𝐴
𝑄◦𝑠 .

The above optimization problem can be expressed as a general function:

max
𝐿𝑑⇄𝑄𝑠

Π ≡ 𝑓
(
𝐿𝑑;

𝑊

𝑃
, 𝐴, 𝐾

)
︸               ︷︷               ︸

objective function

.

First-order necessary conditions and the optimal choice variables determined by them:

𝑓𝐿𝑑 = 0 ⇔ 𝐿◦𝑑 = 𝑓

(
𝑊

𝑃
, 𝐴, 𝐾

)
.

Substituting the above objective function into the value function, we can get the value function:

Π◦ ≡

value function︷                                ︸︸                                ︷
𝑓

(
𝐿◦𝑑

(
𝑊

𝑃
, 𝐴, 𝐾

)
;
𝑊

𝑃
, 𝐴, 𝐾

)
.

It has the following properties:

dΠ◦

d𝐾
=

partial derivative︷︸︸︷
𝑓𝐿◦

𝑑︸         ︷︷         ︸
=0

derivative︷︸︸︷
d𝐿◦𝑑
d𝐾︸︷︷︸
≠0︸                   ︷︷                   ︸

indirect effect

+

partial derivative︷︸︸︷
𝑓𝐾︸         ︷︷         ︸

direct effect

,
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1.1 Static Optimization Problem

= 0 + 𝑓𝐾 .

It can be seen that the derivative value of the value function with respect to a certain exogenous variable is the partial
derivative value of the objective function with respect to the exogenous variable, which is the envelope theorem. This
is a reflection of the comparative analysis in Chapter 3, but it is also an extension of the optimization theme. The reason
for this introduction is that, first, a similar function form is used in the dynamic programming solution method for the
dynamic optimal problem presented later in this chapter; second, it reminds readers that although the value function can
be regarded as a structural equation (there is correlation between the independent variables), it is not troubled by the
endogeneity problem.

It is also necessary to use the second-order condition to determine whether the selected 𝐿◦𝑑 makes the objective
function achieve a maximum or minimum value:

d2Π

d𝐿2
𝑑

= 𝑃𝐹𝐿𝐿 < 0.

The production function is assumed to have positive and decreasing marginal product (𝐹𝐿 > 0, 𝐹𝐿𝐿 < 0), so the
second-order condition is less than 0, meaning that the above optimization problem produces a maximum value. Of course,
according to the definition or the property, it is not difficult to see that the objective function of labor demand defined by
the profit identity is a concave function; in other words, the cost in the profit function is linear, so the concave and convex
characteristics of the profit function are determined by the production function that is closely related to the revenue; in
other words, the concave and convex characteristics of the profit function in this example are consistent with the concave
and convex characteristics of the production function. The concave production function is an important assumption in
economics, so in the profit optimization problem, a local maximum is also a global maximum.

The production function is set to be�𝑄𝑠 = 𝐴𝐾𝛼𝐿1−𝛼
𝑑 , and the parameters 𝛼 ∈ [0, 1] and (1−𝛼) ∈ [0, 1] represent the

output share of the corresponding factors (i.e., the percent change in output caused by a change of 1 percent of the factor).
This is called the Cobb-Douglas function (the origin and properties will be systematically introduced in Chapter 3). If we
do not consider the labor factor for the time being and instead examine oil resources as an input factor, assuming that the
manufacturer maximize output eliminating the cost of oil , that is:

𝑄𝑠 = max
Oil
(A𝐾𝛼Oil1−𝛼 − 𝑝oilOil),

F.O.C.
=====⇒ 0 = (1 − 𝛼)A𝐾𝛼Oil−𝛼 − 𝑝oil,

⇒ Oil−𝛼 =
𝑝oil

(1 − 𝛼)A𝐾𝛼 ,

⇒ Oil =
[

𝑝oil
(1 − 𝛼)A𝐾𝛼

]− 1
𝛼

,

⇒ Oil1−𝛼 =

[
𝑝oil

(1 − 𝛼)A𝐾𝛼

]1− 1
𝛼

,

⇒ 𝑄𝑠 = A𝐾𝛼
[

𝑃Oil
(1 − 𝛼)A𝐾𝛼

]1− 1
𝛼

− 𝑃Oil

[
𝑃Oil

(1 − 𝛼)A𝐾𝛼

]− 1
𝛼

,

= A 1
𝛼 𝑃

1− 1
𝛼

oil (1 − 𝛼)
1
𝛼 −1𝐾 − A 1

𝛼 𝑃
1− 1

𝛼

oil 𝐾 (1 − 𝛼) 1
𝛼 ,

= A 1
𝛼 𝑃

1− 1
𝛼

oil (1 − 𝛼)
1
𝛼 −1𝐾 − A 1

𝛼 𝑃
1− 1

𝛼

oil 𝐾 (1 − 𝛼) 1
𝛼 −1 (1 − 𝛼),

= 𝛼(1 − 𝛼) 1
𝛼 −1A 1

𝛼 𝑃
1− 1

𝛼

oil︸                        ︷︷                        ︸𝐾,
= 𝐴𝐾.

The last step is to set 𝐴 ≡ 𝛼(1 − 𝛼) 1
𝛼 −1A 1

𝛼 𝑃
1− 1

𝛼

oil , where A is the technical level, and 𝐴 is defined as the effective
technical level, which is driven by the actual oil price 𝑝oil. And because 1 − 1

𝛼 < 0, an increase in the actual oil price will
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1.1 Static Optimization Problem

lower the effective technical level. 2

Example 3. Optimal pricing of products in a monopolistic competition market

Given other input factors, the manufacturer chooses the desired labor to maximize profits (the concave production
function ensures that the extreme value is the global maximum). Now it is still assumed that the labor factor market is
perfectly competitive, but the manufacturer has a certain degree of monopoly power in the product sales market, which
means:

(1) If we assume that one manufacturer corresponds to one product, it is not appropriate to use a representative
manufacturer in a monopolistic competition environment, because monopolistic competition means that manufacturers
have pricing power due to product differences. Assuming there are two manufacturers in the market, the products of
manufacturer 1 and manufacturer 2 are not completely substitutable, and the elasticity of substitution is 𝜖 (the specific
definition of this concept is detailed in Chapter 3).

(2) Capital and technology are still given (exogenous), and the capital is even normalized to 1. The production function
is set to 𝑄𝑖𝑠 = 𝐴𝐿1−𝛼

𝑖𝑑 , where 𝛼 = 0 is set to represent constant returns to scale (see also Chapter 3), because the input
factor increases 𝑛 times, it is easy to prove that the output also increase 𝑛 times, that is, 𝐴(𝑛𝐿𝑖𝑑) = 𝑛(𝐴𝐿𝑖𝑑) = 𝑛𝑄𝑖𝑠 . The
factor market is still perfectly competitive, and wages are determined by market supply and demand, set to𝑊 (exogenous
for the manufacturer). However, because the manufacturer 𝑖, 𝑖 = {1, 2} has monopoly powers in the product market, the
factor inputs are determined by the product demands, that is,

𝐴𝐿𝑖𝑑 =

prodect supply determined by product demand︷      ︸︸      ︷
𝑄𝑖𝑠 = 𝑄𝑖𝑑 ⇒

factor demand determined by product deand︷          ︸︸          ︷
𝐿𝑖𝑑 = 𝑄𝑖𝑑/𝐴 .

(3) The demand function for product 𝑖 comes from the utility maximization of the household sector given a budget
constraint. This is the solution to the optimization problem of equality constraints (strictly speaking, inequality constraints),
which will be discussed later. Although the manufacturer has monopoly power for its products and can have pricing power
for its products, the total price level also includes the prices determined by other manufacturers. Therefore, the total price
index 𝑃 is exogenous to any manufacturer; at the same time, the manufacturer’s pricing will affect the demand for the
priced product, but the total demand of the whole society 𝑄𝑑 is also exogenous to a single manufacturer (at equilibrium,
total demand equals total supply equals 𝑄). Based on these introductions, we will directly assume that the demand curve
of product 𝑖 is (Example 9 will explain its origin) without deduction:

𝑄𝑖𝑑 =

(
𝑃𝑖
𝑃

)−𝜖
𝑄.

There are two similar approaches to solving the optimal price when the manufacturer’s profit is optimized (that is, the
desired selling price at the instantaneous state):

Method 1: The manufacturer first selects the product demand to maximize the profit function, and then uses the

inverse demand function 𝑃𝑖 =
(
𝑄𝑖𝑑

𝑄

)− 1
𝜖
𝑃 to solve the optimal price:

max
𝑃𝑖⇄𝑄𝑖𝑑⇆𝐿𝑖𝑑

Π𝑖 ≡ 𝑃𝑖𝑄𝑖𝑑 −𝑊𝐿𝑖𝑑 ,

= 𝑃𝑖𝑄𝑖𝑑 −𝑊
𝑄𝑖𝑑
𝐴

=

(
𝑃𝑖 −

𝑊

𝐴

)
𝑄𝑖𝑑 ,

=

[(
𝑄𝑖𝑑
𝑄

)− 1
𝜖

𝑃 − 𝑊
𝐴

]
𝑄𝑖𝑑 =

𝑄
1− 1

𝜖

𝑖𝑑

𝑄−
1
𝜖

𝑃 − 𝑊
𝐴
𝑄𝑖𝑑 .

The first-order necessary conditions are:
dΠ𝑖
d𝑄𝑖𝑑

=

(
1 − 1

𝜖

)
𝑃𝑄

1
𝜖 𝑄
− 1

𝜖

𝑖𝑑 −
𝑊

𝐴
= 0.

This can be used to solve the desired product demand, and then the desired pricing level can be solved based on the

2The definition of effective technology in the production function uses Moll (2023) for reference.
8
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1.1 Static Optimization Problem

inverse demand function. However, this process is slightly redundant, because by observing the first-order condition above,
in which 𝑃𝑄 1

𝜖 𝑄
− 1

𝜖

𝑖𝑑 is exactly 𝑃𝑖 , this first-order condition is transformed into:(
1 − 1

𝜖

)
𝑃𝑖 −

𝑊

𝐴
= 0.

This skips solving the optimal 𝑄◦𝑖𝑑 and obtains the instantaneous optimal pricing when maximizing profits:

𝑃◦𝑖 =

︷︸︸︷
𝜖

𝜖 − 1︸︷︷︸
markup

·

︷︸︸︷
𝑊

𝐴︸︷︷︸
nominal

MC

.

The marginal output of labor is 𝐴, and the nominal wage divided by the marginal output of labor is the nominal
marginal cost. 𝜖

𝜖 −1 is called the cost markup. Therefore, the above formula shows that the product price under monopolistic
competition is equal to the cost markup multiplied by the marginal cost, which has an additional cost markup compared to
the perfect competition environment.

Method 2: The manufacturer directly chooses the selling price of the product to maximize the profit function:

max
𝐿𝑖𝑑⇄𝑄𝑖𝑑⇄𝑃𝑖

Π𝑖 ≡ 𝑃𝑖𝑄𝑖𝑑 −𝑊𝐿𝑖𝑑 = 𝑃𝑖𝑄𝑖𝑑 −𝑊
𝑄𝑖𝑑
𝐴
,

=

(
𝑃𝑖 −

𝑊

𝐴

)
𝑄𝑖𝑑 =

(
𝑃𝑖 −

𝑊

𝐴

) [(
𝑃𝑖
𝑃

)−𝜖
𝑄

]
,

=
𝑃1−𝜖
𝑖

𝑃−𝜖
𝑄 − 𝑊

𝐴

(
𝑃𝑖
𝑃

)−𝜖
𝑄.

The first-order necessary condition is:

dΠ𝑖
d𝑃𝑖

= (1 − 𝜖)
𝑃−𝜖𝑖
𝑃−𝜖

𝑄 + 𝜖 𝑊
𝐴

(
𝑃𝑖
𝑃

)−𝜖 −1 1
𝑃
𝑄 = 0.

From this we can get:

𝑃◦𝑖
𝑃

=

markup︷︸︸︷
𝜖

𝜖 − 1︸︷︷︸ ·
real MC︷︸︸︷
𝑊/𝑃
𝐴︸︷︷︸ .

The relative price of a product is defined as 𝑃◦𝑖
𝑃 �, while 𝑊

𝑃 represents the real wage level. The real wage divided by
the marginal cost of labor is the real marginal cost. The above formula shows that the relative price of a product under
monopolistic competition is equal to the cost markup multiplied by the real marginal cost. Eliminating the total price level
𝑃 on both sides, we get the same derivation result as in method 1. An equilalent result can also be get by maximizing the
real profit function 𝑃𝑖

𝑃 𝑄𝑖𝑑 −
𝑊
𝑃 𝐿𝑖𝑑 .

Method 3: The manufacturer chooses a price higher than the marginal cost to maximize the profit function:

max
𝑄𝑖𝑑⇄𝑃𝑖

Π𝑖 = (𝑃𝑖 −MC𝑖)𝑄𝑖𝑑 ,

= (𝑃𝑖 −MC𝑖)
[(
𝑃𝑖
𝑃

)−𝜖
𝑄

]
,

=
𝑃1−𝜖
𝑖

𝑃−𝜖
𝑄 −MC𝑖

(
𝑃𝑖
𝑃

)−𝜖
𝑄.

The first-order necessary conditions are:

dΠ𝑖
d𝑃𝑖

= (1 − 𝜖)
𝑃−𝜖𝑖
𝑃−𝜖

𝑄 + 𝜖MC𝑖
(
𝑃𝑖
𝑃

)−𝜖 −1 1
𝑃
𝑄 = 0.

9
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1.1 Static Optimization Problem

From this we can get:
𝑃◦𝑖 =

𝜖

𝜖 − 1
MC𝑖 .

The above solution for the optimal price or the subsequent solution for the optimal demand is based on a given
marginal cost. The marginal cost can also be derived from the profit maximization of equality constraints or the cost
minimization of equality constraints. Although this is an equality-constrained optimization problem, it can be converted
into an unconstrained optimization problem for a single decision variable:

min
𝐿𝑖𝑑
C𝑖 ≡ 𝑊𝐿𝑖𝑑 ,

m

min
𝑄𝑖𝑠

C𝑖 = 𝑊
𝑄𝑖𝑠
𝐴
,

⇒ MC𝑖 ≡
dC

d𝑄𝑖𝑠
=
𝑊

𝐴
= MC.

It can be seen that under the corresponding assumptions, the marginal costs of each manufacturer are the same.

1.1.1.2 Multiple Decision Variables

I. Two Decision Variables

When explaining the first-order necessary conditions for single-variable optimization, we mentioned the idea of   dif-
ferentials, that is, dO = 𝑓 ′ (𝑥)d𝑥. At the extreme point, the change of 𝑥 (d𝑥 ≠ 0) will not cause the change of O (dO = 0).
So it can only be 𝑓 ′ (𝑥) = 0. This is very inspiring for obtaining the first-order necessary conditions for obtaining extreme
values   in the unconstrained optimization problem of two variables. Let the objective function of the two selected variables
be O = 𝑓 (𝑥, 𝑦). The total differential is dO = 𝑓𝑥d𝑥 + 𝑓𝑦d𝑦. At the extreme point, any changes in 𝑥 and 𝑦 (d𝑥 ≠ 0 ≠ d𝑦)
will not cause changes in O (dO = 0), so it can only be

𝑓𝑥 = 0 = 𝑓𝑦 .

This gives the first-order necessary condition for obtaining the extreme value of the two-variable unconstrained opti-
mization problem.

The second-order and higher-order necessary or sufficient conditions for unconstrained optimization problems with
two variables are similar to those for single variables, but usually the second-order conditions are sufficient (ie, the second-
order conditions are not 0), so we will focus on them. By making the function O = 𝑓 (𝑥, 𝑦) perform a second-order Taylor
expansion around (𝑥 = 𝑥𝑜, 𝑦 = 𝑦𝑜) and substituting the first-order necessary conditions into:

𝑓 (𝑥, 𝑦) − 𝑓 (𝑥𝑜, 𝑦𝑜) = 𝑓 𝑜𝑥 (𝑥 − 𝑥𝑜) + 𝑓 𝑜𝑦 (𝑦 − 𝑦𝑜) +
1
2!

[
𝑓 𝑜𝑥𝑥 (𝑥 − 𝑥𝑜)2 + 2 𝑓 𝑜𝑥𝑦 (𝑥 − 𝑥𝑜) (𝑦 − 𝑦𝑜) + 𝑓 𝑜𝑦𝑦 (𝑦 − 𝑦𝑜)2

]
,

= 0 + 0 + 1
2!

[
𝑓 𝑜𝑥𝑥 (𝑥 − 𝑥𝑜)2 + 2 𝑓 𝑜𝑥𝑦 (𝑥 − 𝑥𝑜) (𝑦 − 𝑦𝑜) + 𝑓 𝑜𝑦𝑦 (𝑦 − 𝑦𝑜)2

]
,

=
𝑓 𝑜𝑥𝑥
2

[
(𝑥 − 𝑥𝑜)2 + 2

𝑓 𝑜𝑥𝑦

𝑓 𝑜𝑥𝑥
(𝑥 − 𝑥𝑜) (𝑦 − 𝑦𝑜) +

𝑓 𝑜𝑦𝑦

𝑓 𝑜𝑥𝑥
(𝑦 − 𝑦𝑜)2

]
,

=
𝑓 𝑜𝑥𝑥
2

[
(𝑥 − 𝑥𝑜)2 + 2

𝑓 𝑜𝑥𝑦

𝑓 𝑜𝑥𝑥
(𝑥 − 𝑥𝑜) (𝑦 − 𝑦𝑜)+

( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2 −

( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2 +

𝑓 𝑜𝑦𝑦

𝑓 𝑜𝑥𝑥
(𝑦 − 𝑦𝑜)2

]
,

=
𝑓 𝑜𝑥𝑥
2

{[
(𝑥 − 𝑥𝑜)2 + 2

𝑓 𝑜𝑥𝑦

𝑓 𝑜𝑥𝑥
(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜) +

( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2

]
+

[
𝑓 𝑜𝑦𝑦

𝑓 𝑜𝑥𝑥
(𝑦 − 𝑦𝑜)2 −

( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2

]}
,

=
𝑓 𝑜𝑥𝑥
2

{[
(𝑥 − 𝑥𝑜)2 + 2

𝑓 𝑜𝑥𝑦

𝑓 𝑜𝑥𝑥
(𝑥 − 𝑥𝑜)(𝑦 − 𝑦𝑜) +

( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2

]
+
𝑓 𝑜𝑥𝑥 𝑓

𝑜
𝑦𝑦 − ( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2

}
,

=
𝑓 𝑜𝑥𝑥
2

{[
(𝑥 − 𝑥𝑜) +

𝑓 𝑜𝑥𝑦

𝑓 𝑜𝑥𝑥
(𝑦 − 𝑦𝑜)

]2
+
𝑓 𝑜𝑥𝑥 𝑓

𝑜
𝑦𝑦 − ( 𝑓 𝑜𝑥𝑦)2

( 𝑓 𝑜𝑥𝑥)2
(𝑦 − 𝑦𝑜)2

}
︸                                                                            ︷︷                                                                            ︸

squaring

;

10
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or
=

1
2

quadratic form︷                                                ︸︸                                                ︷[
𝑥 − 𝑥𝑜 𝑦 − 𝑦𝑜

] [
𝑓 𝑜𝑥𝑥 𝑓 𝑜𝑥𝑦
𝑓 𝑜𝑦𝑥 𝑓 𝑜𝑦𝑦

]
︸         ︷︷         ︸
Hessian matrix

[
𝑥 − 𝑥𝑜
𝑦 − 𝑦𝑜

]
=

1
2!

[
𝑓 𝑜𝑥𝑥 (𝑥 − 𝑥𝑜)2 + 2 𝑓 𝑜𝑥𝑦 (𝑥 − 𝑥𝑜) (𝑦 − 𝑦𝑜) + 𝑓 𝑜𝑦𝑦 (𝑦 − 𝑦𝑜)2

]
.

Judging from the formula obtained by “squaring”, to determine whether it is positive or negative, it depends on the
positive or negative of 𝑓 𝑜𝑥𝑥 and 𝑓 𝑜𝑥𝑥 𝑓

𝑜
𝑦𝑦 − ( 𝑓 𝑜𝑥𝑦)2, and first of all, 𝑓 𝑜𝑥𝑥 𝑓 𝑜𝑦𝑦 > ( 𝑓 𝑜𝑥𝑦)2should be satisfied. Under this:

1) If 𝑓 𝑜𝑥𝑥 > 0, 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥𝑜, 𝑦𝑜) > 0, that is, 𝑓 (𝑥, 𝑦) > 𝑓 (𝑥𝑜, 𝑦𝑜), so 𝑓 (𝑥𝑜, 𝑦𝑜) is the minimum.

2) If 𝑓 𝑜𝑥𝑥 < 0, 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥𝑜, 𝑦𝑜) < 0, that is, 𝑓 (𝑥, 𝑦) < 𝑓 (𝑥𝑜, 𝑦𝑜), so 𝑓 (𝑥𝑜, 𝑦𝑜) is the maximum.

3) Since 𝑓 𝑜𝑥𝑥 𝑓 𝑜𝑦𝑦 > ( 𝑓 𝑜𝑥𝑦)2 always holds, 𝑓 𝑜𝑥𝑥 � 𝑓 𝑜𝑦𝑦 always have the same sign in the case above.

Judging from the formula obtained from the ”quadratic form”, the above conditions for determining positive and
negative are easily reflected in the Hessian determinant:

4) When the “squared” formula is positive, the leading principal minors of the 2× 2 -dimensional Hessian matrix are
all positive, and the object function has a minimum, that is,

minimum



first-order leading principal minor:
��� 𝑓 𝑜𝑥𝑥 ��� > 0,

and

second-order leading principal minor:

����� 𝑓 𝑜𝑥𝑥 𝑓 𝑜𝑥𝑦
𝑓 𝑜𝑦𝑥 𝑓 𝑜𝑦𝑦

����� > 0.


positive definite

5) When the “squared” formula is negative, the leading principal minors of the 2×2 -dimensional Hessian matrix are
first negative and then positive, and the object function has a maximum, that is,

maximum



first-order leading principal minor:
��� 𝑓 𝑜𝑥𝑥 ��� < 0,

and

second-order leading principal minor:

����� 𝑓 𝑜𝑥𝑥 𝑓 𝑜𝑥𝑦
𝑓 𝑜𝑦𝑥 𝑓 𝑜𝑦𝑦

����� > 0.


negative definite

If the second-order condition continues to be 0, then look at higher-order conditions until a higher-order sufficient
condition that is not 0 appears. When the first-order necessary conditions are met and the positive or negative conditions
of the second-order or higher-order conditions cannot be determined, it means that an “inflection point” appears in single
variable optimization, but this is more complicated and may also be a “saddle point”, that is, a maximum value on one
cross section and a minimum value on another cross section.

Example 4. Capital and labor demand in a perfectly competitive market environment

Still taking the problem of maximizing the manufacturer’s profit as an example, we add tangible capital as a choice
variable. But note that𝑄𝑠 = 𝐹 (𝐾𝑑 , 𝐿𝑑) is not a constraint, because the equation does not intend to describe the relationship
between the two choice variables𝐾𝑑 and 𝐿𝑑 . Therefore, the unconstrained optimization problem of the two choice variables
is:

max
{𝐾𝑑 ,𝐿𝑑 }⇄𝑄𝑠

Π ≡ 𝑃𝐹 (𝐾𝑑 , 𝐿𝑑) − 𝑅𝑃𝐾𝑑 −𝑊𝐿𝑑 .

First-order necessary conditions: 
dΠ
d𝐾𝑑

= 𝑃𝐹𝐾 (𝐾𝑑 , 𝐿𝑑) − 𝑅𝑃 = 0,

dΠ
d𝐿𝑑

= 𝑃𝐹𝐿 (𝐾𝑑 , 𝐿𝑑) −𝑊 = 0.

The nominal wage of labor is 𝑊 , the marginal output of labor (marginal material product) is 𝐹𝐿 (𝐾𝑑 , 𝐿𝑑); the rental
rate of capital 𝑅 = 𝑟 + 𝛿 = 𝑖 − 𝜋𝑒 + 𝛿 is called the marginal cost of capital use (where 𝑟 = 𝑖 − 𝜋𝑒 represents the real interest

11
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rate, 𝜋𝑒 is the expected inflation rate, and 𝛿 is the capital depreciation rate. Example 12-1 and other places also explain
the reason) 𝐹𝐾 (𝐾𝑑 , 𝐿𝑑) is the marginal product of capital.

The second-order condition can be given by the Hessian matrix:

[
Π𝐾𝐾 Π𝐾𝐿
Π𝐿𝐾 Π𝐿𝐿

]
︸            ︷︷            ︸

Hessian matrix

⇒



first-order leading principal minor:
���Π𝐾𝐾 ��� = 𝑃𝐹𝐾𝐾 < 0,

second-order leading principal minor:

������Π𝐾𝐾 Π𝐾𝐿

Π𝐿𝐾 Π𝐿𝐿

������ = 𝑃2 (𝐹𝐾𝐾𝐹𝐿𝐿 − 𝐹2
𝐾𝐿) > 0.

Although the orders of the cross partial derivatives of 𝐹𝐾𝐿 and 𝐹𝐿𝐾 are different, as long as they are continuous,
according to Young’s theorem, 𝐹𝐾𝐿 = 𝐹𝐿𝐾 .

When 𝐹𝐾𝐾 < 0, according to 𝐹𝐾𝐾𝐹𝐿𝐿 > 𝐹2
𝐾𝐿 , it should be that 𝐹𝐿𝐿 < 0. Therefore, the second-order sufficient

condition for this optimization problem is: 
𝐹𝐾𝐾 < 0,

𝐹𝐿𝐿 < 0,

𝐹𝐾𝐾𝐹𝐿𝐿 > 𝐹
2
𝐾𝐿 .

It can be seen that the assumptions about some common properties of the production function are to make the profit
own a maximum. If the production function is a concave curve (the second-order derivative is less than 0 everywhere),
then the local maximum is also the global maximum. Similar to the second-order conditions for the maximum value of a
single variable, the decreasing rate of change of the marginal output of the two factors of capital and labor in the case of two
variables is also a part of sufficient conditions for the maximum value, but there is an additional condition for obtaining the
extreme value that ”the product of the rates of change of the same factors is greater than the product of the rates of change
of the cross factors”. The reason for adding this condition is that the change of one factor not only affects its own marginal
output but also affects the marginal output of the other factor. Assume that 𝐹𝐾𝐿 = 𝐹𝐿𝐾 is greater than 𝐹𝐾𝐾 and 𝐹𝐿𝐿 , or the
impact of a factor change (such as capital) on the marginal output of the other factor (i.e., labor) is greater than the impact
on the marginal output of the factor (ie, capital) itself. Although 𝐹𝐾𝐾 < 0, this will lead to a net increase in 𝐹𝐾 rather
than a decrease. At this time, increasing capital and reducing labor can still increase profits. Therefore, 𝐹𝐾𝐾𝐹𝐿𝐿 > 𝐹2

𝐾𝐿

is another sufficient condition for achieving the extreme value [39, pp.76-77].

Example 5. Optimal pricing of two products in a monopolistic competition market

Assume that the prices of the two products of a manufacturer with a certain degree of monopoly power are 𝑃1 and 𝑃2

respectively, and the market demand functions for these two products are:

𝑄1𝑑 = 𝑎 − 𝑏𝑃1 + 𝑃2,

𝑄2𝑑 = 𝛼 − 𝛽𝑃2 + 𝑃1.

}
vs.

{
log𝑄1𝑑 = log𝑄 − 𝜖 log 𝑃1 + 𝜖 log 𝑃,

log𝑄2𝑑 = log𝑄 − 𝜖 log 𝑃2 + 𝜖 log 𝑃.

The two sets of demand curves can be compared: the left side is the ad-hoc form, and the right side is the demand
curve of the two products picked out in Example 3 (it will be introduced later that it can be strictly derived based on
maximizing the consumption of a basket of consumer goods under given household sector expenditure, so it has a micro
foundation). Excepting the logarithm form of the two sides of the equations on the right, the two demand curves are very
similar. The aggregate price level 𝑃 includes the prices of products other than product 1, such as 𝑃2. The different products
on the right side correspond to different manufacturers, and what needs to be calculated is the profit maximization of a
certain manufacturer, so only its price itself is the choice variable; while the two products on the left side belong to the same
manufacturer, and what needs to be calculated is also the profit maximization of the manufacturer, so price 1 and price 2 are
both choice variables. But in general, it can be seen from the demand function that the sales of the two commodities will
affect each other. If the price of one commodity is high, the demand will be low, but if the price of the other commodity
is high, the demand will also be high. This shows that both are normal commodities and are substitutable for each other.
In particular, the right side gives a substitution elasticity that will not approach infinity as 𝜖 .
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1.1 Static Optimization Problem

The profit of a monopolistically competitive firm is defined as total revenue minus total cost, that is,
total profit︷︸︸︷

Π ≡

total revenue︷      ︸︸      ︷
R(𝑃1, 𝑃2) −

total cost︷      ︸︸      ︷
C(𝑃1, 𝑃2) .

The total revenue is

R(𝑃1, 𝑃2) = 𝑃1𝑄1𝑑 + 𝑃2𝑄2𝑑 ,

= 𝑃1 (𝑎 − 𝑏𝑃1 + 𝑃2) + 𝑃2 (𝛼 − 𝛽𝑃2 + 𝑃1),
= 𝑎𝑃1 − 𝑏𝑃2

1 + 𝑃1𝑃2 + 𝛼𝑃2 − 𝛽𝑃2
2 + 𝑃1𝑃2,

= 𝑎𝑃1 − 𝑏𝑃2
1 + 𝛼𝑃2 − 𝛽𝑃2

2 + 2𝑃1𝑃2.

The discussion of factor markets is ignored here, and a total cost function can be simply assumed:

C(𝑃1, 𝑃2) = 𝑄2
1𝑑 +𝑄1𝑑𝑄2𝑑 +𝑄2

2𝑑 ,

= (𝑎 − 𝑏𝑃1 + 𝑃2)2 + (𝑎 − 𝑏𝑃1 + 𝑃2) (𝛼 − 𝛽𝑃2 + 𝑃1) + (𝛼 − 𝛽𝑃2 + 𝑃1)2,

= (𝑎2 + 𝑏2𝑃2
1 + 𝑃

2
2 − 2𝑎𝑏𝑃1 + 2𝑎𝑃2 − 2𝑏𝑃1𝑃2)

+ (𝑎𝛼 − 𝑎𝛽𝑃2 + 𝑎𝑃1 − 𝑏𝛼𝑃1 + 𝑏𝛽𝑃1𝑃2 − 𝑏𝑃2
1 + 𝛼𝑃2 − 𝛽𝑃2

2 + 𝑃1𝑃2)

+ (𝛼2 + 𝛽2𝑃2
2 + 𝑃

2
1 − 2𝛼𝛽𝑃2 + 2𝛼𝑃1 − 2𝛽𝑃1𝑃2),

= (𝑎2 + 𝑎𝛼 + 𝛼2) + (−2𝑎𝑏 + 𝑎 − 𝑏𝛼 + 2𝛼)𝑃1 + (2𝑎 − 𝑎𝛽 + 𝛼 − 2𝛼𝛽)𝑃2

+ (𝑏2 − 𝑏 + 1)𝑃2
1 + (1 − 𝛽 + 𝛽

2)𝑃2
2 + (−2𝑏 + 𝑏𝛽 + 1 − 2𝛽)𝑃1𝑃2.

So we get the objective function:

max
{𝑃1 ,𝑃2 }

Π = −(𝑎2 + 𝑎𝛼 + 𝛼2) + (2𝑎𝑏 + 𝑏𝛼 − 2𝛼)𝑃1 + (𝑎𝛽 + 2𝛼𝛽 − 2𝑎)𝑃2 − (1 + 𝑏2)𝑃2
1 − (1 + 𝛽

2)𝑃2
2 + (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃1𝑃2.

The first-order necessary conditions are:
𝜕Π
𝜕𝑃1

= (2𝑎𝑏 + 𝑏𝛼 − 2𝛼) − 2(1 + 𝑏2)𝑃1 + (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃2 = 0,

𝜕Π
𝜕𝑃2

= (𝑎𝛽 + 2𝛼𝛽 − 2𝑎) − 2(1 + 𝛽2)𝑃2 + (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃1 = 0.

Rearrange:

2(1 + 𝑏2)𝑃1 − (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃2 = 𝑏𝛼 + 2𝑎𝑏 − 2𝛼,

−(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃1 + 2(1 + 𝛽2)𝑃2 = 𝑎𝛽 + 2𝛼𝛽 − 2𝑎.

}
vs.

{
𝐹1 ≡ 2(1 + 𝑏2)𝑃1 − (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃2 − 𝑏𝛼 − 2𝑎𝑏 + 2𝛼 = 0,

𝐹2 ≡ −(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃1 + 2(1 + 𝛽2)𝑃2 − 𝑎𝛽 − 2𝛼𝛽 + 2𝑎 = 0.

Written in matrix form:[
2(1 + 𝑏2) −(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)

−(1 + 2𝑏 − 𝑏𝛽 + 2𝛽) 2(1 + 𝛽2)

]
︸                                                        ︷︷                                                        ︸

J

[
𝑃1
𝑃2

]
︸︷︷︸

y

=

[
𝑏𝛼 + 2𝑎𝑏 − 2𝛼
𝑎𝛽 + 2𝛼𝛽 − 2𝑎

]
︸                ︷︷                ︸

x

vs.

[
𝜕𝐹1

𝜕𝑃1
𝜕𝐹1

𝜕𝑃2
𝜕𝐹2

𝜕𝑃1
𝜕𝐹2

𝜕𝑃2

]
︸           ︷︷           ︸

J

[
𝑃1
𝑃2

]
︸︷︷︸

y

=

[
𝑏𝛼 + 2𝑎𝑏 − 2𝛼
𝑎𝛽 + 2𝛼𝛽 − 2𝑎

]
︸                ︷︷                ︸

x

If the Jacobi matrix is J ≠ 0, then either matrix inversion or Cramer’s rule can be used to solve the endogenous
variables 𝑃1 and 𝑃2 (goal equilibrium values), thereby obtaining the optimal selling price (desired price) of the two com-
modities:

matrix inversion
=============⇒

solve jointly

[
𝑃◦1
𝑃◦2

]
=

[
2(1 + 𝑏2) −(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)

−(1 + 2𝑏 − 𝑏𝛽 + 2𝛽) 2(1 + 𝛽2)

]−1 [
𝑏𝛼 + 2𝑎𝑏 − 2𝛼
𝑎𝛽 + 2𝛼𝛽 − 2𝑎

]
;

or
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1.1 Static Optimization Problem

Cramer’s rule
==============⇒

solve individually



𝑃◦1 =

��������
𝑏𝛼 + 2𝑎𝑏 − 2𝛼 −(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)
𝑎𝛽 + 2𝛼𝛽 − 2𝑎 2(1 + 𝛽2)

����������������
2(1 + 𝑏2) −(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)

−(1 + 2𝑏 − 𝑏𝛽 + 2𝛽) 2(1 + 𝛽2)

��������
,

𝑃◦2 =

��������
2(1 + 𝑏2) 𝑏𝛼 + 2𝑎𝑏 − 2𝛼

−(1 + 2𝑏 − 𝑏𝛽 + 2𝛽) 𝑎𝛽 + 2𝛼𝛽 − 2𝑎

����������������
2(1 + 𝑏2) −(1 + 2𝑏 − 𝑏𝛽 + 2𝛽)

−(1 + 2𝑏 − 𝑏𝛽 + 2𝛽) 2(1 + 𝛽2)

��������
.

The next chapter will focus on equilibrium problems and will introduce the application of matrix algebra in solving
the equilibrium of a linear system. The elimination method can also be used here. It is worth mentioning that the above
solution process converts the objective function into a function containing only prices (choice variable), but it can also
be solved like the method 1 of solving the previous Example 3, converting the demand function as an inverse demand
function, writing the objective function as the function of product demands, and then using them as the choice variables.
After solving the desired demand for the product, the desired price of each product is solved based on the inverse demand
function. For this problem, this idea is actually simpler [8, pp.332-333].

The second-order sufficient condition is:

[
Π𝑃1𝑃1 Π𝑃1𝑃2

Π𝑃2𝑃1 Π𝑃2𝑃2

]
︸               ︷︷               ︸

Hessian matrix

⇒



first-order leading principal minor:
���Π𝑃1𝑃1

��� ,
second-order leading principal minor:

������Π𝑃1𝑃1 Π𝑃1𝑃2

Π𝑃2𝑃1 Π𝑃2𝑃2

������ .
with

𝜕Π
𝜕𝑃1

= (2𝑎𝑏 + 𝑏𝛼 − 2𝛼) − 2(1 + 𝑏2)𝑃1 + (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃2 = 0,

𝜕Π
𝜕𝑃2

= (𝑎𝛽 + 2𝛼𝛽 − 2𝑎) − 2(1 + 𝛽2)𝑃2 + (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)𝑃1 = 0.

 ⇒

Π𝑃1𝑃1 = −2(1 + 𝑏2),
Π𝑃1𝑃2 = 1 + 2𝑏 − 𝑏𝛽 + 2𝛽,

Π𝑃2𝑃2 = −2(1 + 𝛽2),
Π𝑃2𝑃1 = 1 + 2𝑏 − 𝑏𝛽 + 2𝛽.

The first-order leading principal minor is −2(1+ 𝑏2) < 0 and the second-order leading principal minor is the Hessian
determinant itself: 4(1 + 𝑏2) (1 + 𝛽2) − (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)2. To ensure that the value sought is a maximum (concave or
quasi-concave function leads to a maximum value), the second-order leading principal minor should be positive, that is,
4(1 + 𝑏2)(1 + 𝛽2) > (1 + 2𝑏 − 𝑏𝛽 + 2𝛽)2.

II. Multiple Decision Variables

The following discusses the unconstrained optimization problem with 𝑚 ≥ 3 choice variables. Let the objective
function be O = 𝑓 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚), which is dO = 𝑓1d𝑥1 + 𝑓2d𝑥2 + 𝑓3d𝑥3 + · · · + 𝑓𝑚d𝑥𝑚 after total differentiation, where
𝑓 𝑗 represents the partial derivative of the function with respect to each choice variable 𝑥 𝑗 , and 𝑗 ∈ [1, 𝑚] is a positive
integer. Similar to the discussion of the first-order necessary conditions in the double-variable section, at the extreme
point, the change of 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚 does not cause the change of O(dO = 0). Using ∇ to represent the set of partial
derivatives of the function with respect to each element (gradient vector), the condition is,

∇ 𝑓 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚) = 0,

this gives the first-order necessary conditions for achieving extreme values   in multi-variable unconstrained optimization
problems.

Double-variable problems are already multi-variable in fact, so the second-order and higher-order necessary or suf-
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ficient conditions for unconstrained optimization problems with more variables are naturally still similar to the discussion
steps for single-variable problems. For simplicity, only the second-order Taylor expansion of the function of 3 choice
variables around (𝑥1 = 𝑥1𝑜, 𝑥2 = 𝑥2𝑜, 𝑥3 = 𝑥3𝑜) is listed, and the second-order partial derivatives at this point are marked
as 𝑓 𝑜𝑥𝑖 𝑥 𝑗 , 𝑖 = {1, 2, 3}, 𝑗 = {1, 2, 3}. Substituting the first-order necessary conditions into:

𝑓 (𝑥1, 𝑥2, 𝑥3) − 𝑓 (𝑥1𝑜, 𝑥2𝑜, 𝑥3𝑜) = 𝑓 𝑜𝑥1𝑥1 (𝑥1 − 𝑥1𝑜)2 + 𝑓 𝑜𝑥1𝑥2 (𝑥1 − 𝑥1𝑜) (𝑥2 − 𝑥2𝑜) + 𝑓 𝑜𝑥1𝑥3 (𝑥1 − 𝑥1𝑜)(𝑥3 − 𝑥3𝑜)
+ 𝑓 𝑜𝑥2𝑥1 (𝑥2 − 𝑥2𝑜)(𝑥1 − 𝑥1𝑜) + 𝑓 𝑜𝑥2𝑥2 (𝑥2 − 𝑥2𝑜)2 + 𝑓 𝑜𝑥2𝑥3 (𝑥2 − 𝑥2𝑜)(𝑥3 − 𝑥3𝑜)
+ 𝑓 𝑜𝑥3𝑥1 (𝑥3 − 𝑥3𝑜)(𝑥1 − 𝑥1𝑜) + 𝑓 𝑜𝑥3𝑥2 (𝑥3 − 𝑥3𝑜) (𝑥2 − 𝑥2𝑜) + 𝑓 𝑜𝑥3𝑥3 (𝑥3 − 𝑥3𝑜)2,

= Left to readers︸            ︷︷            ︸
squaring

;

or
=

quadratic form︷                                                                                  ︸︸                                                                                  ︷[
𝑥1 − 𝑥1𝑜 𝑥2 − 𝑥2𝑜 𝑥3 − 𝑥3𝑜

] 
𝑓 𝑜𝑥1𝑥1 𝑓 𝑜𝑥1𝑥2 𝑓 𝑜𝑥1𝑥3

𝑓 𝑜𝑥2𝑥1 𝑓 𝑜𝑥2𝑥2 𝑓 𝑜𝑥2𝑥3

𝑓 𝑜𝑥3𝑥1 𝑓 𝑜𝑥3𝑥2 𝑓 𝑜𝑥3𝑥3

︸                      ︷︷                      ︸
Hessian Matrix


𝑥1 − 𝑥1𝑜

𝑥2 − 𝑥2𝑜

𝑥3 − 𝑥3𝑜

 .
For the Hessian determinant of 2 × 2 dimension, the concept of leading principal minor is not introduced. However,

for the Hessian determinant of 3 × 3 and higher dimensions, the first one of each order principal minors is the leading
principal minor, which is the object of our attention.

For the 3 × 3-dimensional Hessian determinant , if all leading principal minors are positive, the function has a mini-
mum, that is,

minimum



first-order leading principal minor:
��� 𝑓 𝑜𝑥1𝑥1

��� > 0,

and

second-order leading principal minor:

����� 𝑓 𝑜𝑥1𝑥1 𝑓 𝑜𝑥1𝑥2

𝑓 𝑜𝑥2𝑥1 𝑓 𝑜𝑥2𝑥2

����� > 0,

and

third-order leading principal minor:

�������
𝑓 𝑜𝑥1𝑥1 𝑓 𝑜𝑥1𝑥2 𝑓 𝑜𝑥1𝑥3

𝑓 𝑜𝑥2𝑥1 𝑓 𝑜𝑥2𝑥2 𝑓 𝑜𝑥2𝑥3

𝑓 𝑜𝑥3𝑥1 𝑓 𝑜𝑥3𝑥2 𝑓 𝑜𝑥3𝑥3

������� > 0.



positive definite

For the 3× 3-dimensional Hessian determinant , if the leading principal minors are negative, positive and negetive in
order, the function has a maximum, that is,

maximum



first-order leading principal minor:
��� 𝑓 𝑜𝑥1𝑥1

��� < 0,

and

second-order leading principal minor:

����� 𝑓 𝑜𝑥1𝑥1 𝑓 𝑜𝑥1𝑥2

𝑓 𝑜𝑥2𝑥1 𝑓 𝑜𝑥2𝑥2

����� > 0,

and

third-order leading principal minor:

�������
𝑓 𝑜𝑥1𝑥1 𝑓 𝑜𝑥1𝑥2 𝑓 𝑜𝑥1𝑥3

𝑓 𝑜𝑥2𝑥1 𝑓 𝑜𝑥2𝑥2 𝑓 𝑜𝑥2𝑥3

𝑓 𝑜𝑥3𝑥1 𝑓 𝑜𝑥3𝑥2 𝑓 𝑜𝑥3𝑥3

������� < 0.



negative definite

Example 6. Demand for physical capital, human capital, and labor in a perfectly competitive market

In the previous Example 4, it is implied that all workers have the same production technology or the same working
hours. However, due to education, training, and learning by doing, workers will form an effective unit labor stock, which
is called human capital and is represented by 𝐻. Therefore, the unconstrained optimization problem of the three choice

15



ide
ng

yf.
git

hu
b.i

o

1.1 Static Optimization Problem

variables is:
max

{𝐾𝑑 ,𝐻𝑑 ,𝐿𝑑 }
Π ≡ 𝑃𝐹 (𝐾𝑑 , 𝐻𝑑 , 𝐿𝑑) − 𝑅𝑃𝐾𝑑 −𝑊𝐻𝐻𝑑 −𝑊𝐿𝐿𝑑 .

First-order necessary conditions: 

dΠ
d𝐾𝑑

= 𝑃𝐹𝐾 (𝐾𝑑 , 𝐻𝑑 , 𝐿𝑑) − 𝑅𝑃 = 0,

dΠ
d𝐻𝑑

= 𝑃𝐹𝐻 (𝐾𝑑 , 𝐻𝑑 , 𝐿𝑑) −𝑊𝐻 = 0,

dΠ
d𝐿𝑑

= 𝑃𝐹𝐿 (𝐾𝑑 , 𝐻𝑑 , 𝐿𝑑) − 𝑊𝐿 = 0.

The nominal wage of effective labor is𝑊𝐻 , and the marginal output (marginal material product) of effective labor is
𝐹𝐻 (𝐾𝑑 , 𝐻𝑑 , 𝐿𝑑)�

The second-order conditions can be given by the Hessian matrix:


Π𝐾𝐾 Π𝐾𝐻 Π𝐾𝐿
Π𝐻𝐾 Π𝐻𝐻 Π𝐻𝐿
Π𝐿𝐾 Π𝐿𝐻 Π𝐿𝐿

︸                       ︷︷                       ︸
Hessian matrix

⇒



first-order leading principal minor:
���Π𝐾𝐾 ��� = 𝑃𝐹𝐾𝐾 < 0,

second-order leading principal minor:

������Π𝐾𝐾 Π𝐾𝐻

Π𝐻𝐾 Π𝐻𝐻

������ = 𝑃2 (𝐹𝐾𝐾𝐹𝐻𝐻 − 𝐹2
𝐾𝐻 ) > 0,

third-order leading principal minor:

��������
Π𝐾𝐾 Π𝐾𝐻 Π𝐾𝐿

Π𝐻𝐾 Π𝐻𝐻 Π𝐻𝐿

Π𝐿𝐾 Π𝐿𝐻 Π𝐿𝐿

�������� ⋛ 0?

From the analysis above, we can know that the second-order leading principal minor should be positive. On this basis,
the odd-order leading principal minors have the same sign, that is,

third-order:

�������
Π𝐾𝐾 Π𝐾𝐻 Π𝐾𝐿
Π𝐻𝐾 Π𝐻𝐻 Π𝐻𝐿
Π𝐿𝐾 Π𝐿𝐻 Π𝐿𝐿

������� = 𝑃3 (𝐹𝐾𝐾𝐹𝐻𝐻𝐹𝐿𝐿 + 2𝐹𝐾𝐻𝐹𝐻𝐿𝐹𝐿𝐾 − 𝐹𝐾𝐾𝐹2
𝐻𝐿 − 𝐹𝐿𝐿𝐹2

𝐾𝐻 − 𝐹𝐻𝐻𝐹2
𝐾𝐿) < 0.

Under these conditions, the objective function has a maximum.

In summary, it is not difficult to find that:

(1) The first-order leading principal minor is the first element in the upper left corner of the Hessian matrix, the
second-order leading principal minbor is the determinant of the four elements in the upper left corner of the Hessian
matrix, and the third-order leading principal subformula is the Hessian determinant itself. These are the leading principal
minors of the 3× 3 Hessian determinant, and the the leading principal minors of 𝑚 ×𝑚 Hessian determinant are the same.

(2) For 𝑚 ×𝑚 Hessian determinant, when there is a minimum, all leading principal minors of each order are positive,
and when there is a maximum, all leading principal minors of each order are alternately positive and negative; more
precisely, the leading principal minors of even order are always positive, and if the leading principal minors of odd order
are positive, there is a maximum; if the leading principal minors of odd order are negative, there is a minimum.

1.1.2 Constrained Optimization

In the previous section, the choice variables will not restrict each other, and the decision on a certain choice variable
will not affect other choice variables, so it is also called free optimization. Starting from this section, we will consider
optimization problems with various forms of constraints, including equality constraints, non-negative constraints, and
inequality constraints. It is not difficult to imagine that constraints will reduce the domain of definition, and the range
of the objective function will naturally become smaller, so the constrained extreme value will always be less than (when
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maximizing, or exactly equal to) or more than(when minimizing, or exactly equal to) the free extreme value. 3

1.1.2.1 Equality Constraints Between Choice Variables

I. Two-Variable Question with Single Equality Constraint

Assume that the objective function and constraint conditions of the two-variable problem with single equality con-
straint are:

max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) = 𝑧,
Among them, 𝑥 and 𝑦 are choice variables (independent variables), O is the extreme value (dependent variable), 𝑓 and
𝑔 are function symbols, and 𝑧 is a constant (fixed number) or parameter (variable number). The constraints can also be
written as 𝑔(𝑥, 𝑦, 𝑧) = 0 or simplified to 𝑔(𝑥, 𝑦) = 0 by letting 𝑧 = 0.

i) Elimination method

One solution to the equality constrained optimization problem is to solve the function of one or more more variables
through the constraints and substitute it into the objective function. In this way, the equality constrained optimization is
transformed into a free optimization problem. After the dimension of the selected variables in the objective function is
reduced, the necessary and sufficient conditions of unconstrained optimization can be directly applied.

ii) Differentiation method

From a geometric point of view, the optimal value is taken from the tangent point of the constraint line and the equal-
value target line (indifference curve), that is, at this point, the slope of the constraint line is the same as the slope of the
indifference curve. Its theoretical basis is:

For the unconstrained optimization problem of two variables O = 𝑓 (𝑥, 𝑦), after total differentiation, we have dO =

𝑓𝑥d𝑥 + 𝑓𝑦d𝑦, and at the extreme point, we must have 𝑓𝑥 = 0 = 𝑓𝑦 , so dO = 0. After adding the constraint 𝑔(𝑥, 𝑦) = 𝑧, the
objective function can still be fully differentiated, but 𝑓𝑥 = 0 = 𝑓𝑦 does not need to be satisfied, as long as dO = 0. d𝑥 and
d𝑦 are no longer arbitrarily variable, and the range of variation is reduced to the straight line 𝑔𝑥d𝑥 + 𝑔𝑦d𝑦 = 0. To satisfy
the above two conditions, we only need to have:�

𝑓𝑥
𝑓𝑦

=
𝑔𝑥
𝑔𝑦

or⇐==⇒ 𝑓𝑥
𝑔𝑥

=
𝑓𝑦

𝑔𝑦
.

iii) Multiplier method

The derivation of the Lagrange multiplier method can also be transform a constrained optimization to an unconstrained
optimization. Starting from the constraints, we have:

𝑔(𝑥, 𝑦) = 𝑧,
𝑔𝑦 exists
=======⇒
𝑔𝑦≠0

d𝑦 = −𝑔𝑥
𝑔𝑦

d𝑥,

⇒ 𝑦 = 𝑦(𝑥),
⇒ O = 𝑓 [𝑥, 𝑦(𝑥)] .

This incorporates the constraints into the objective function. Then the second-order Taylor expansion is performed

3Taking bivariate equality-constrained optimization as an example, if there are two linear constraint equations intersecting at one point, these two con-
straints actually eliminate other possibilities for choice variables, rendering the constrained optimization problem meaningless. Therefore, the number
of constraint equations should be less than the number of choice variables, so as to have a practical restrictive effect on the choice variables.
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around point 𝑥 = 𝑥𝑜:

𝑓 [𝑥, 𝑦 (𝑥 ) ]− 𝑓 [𝑥𝑜 , 𝑦 (𝑥𝑜 ) ] =

nonlinear approximitation︷                                                                                                                                                                     ︸︸                                                                                                                                                                     ︷
𝑓 𝑜𝑥 [𝑥, 𝑦 (𝑥 ) ]︸           ︷︷           ︸

first-order
partial deravative

+

𝑎︷           ︸︸           ︷
𝑓 𝑜𝑦 [𝑥, 𝑦 (𝑥 ) ]

𝑏︷ ︸︸ ︷
𝑦𝑜𝑥 (𝑥 )︸                     ︷︷                     ︸

composite first-order
partial deravative


(𝑥 − 𝑥𝑜 )

︸                                                             ︷︷                                                             ︸
linear approximitation

+
(

partial
deravative︷︸︸︷
𝑓 𝑜𝑥𝑥 +

composite
deravative︷  ︸︸  ︷
𝑓 𝑜𝑥𝑦 𝑦

𝑜
𝑥 ) + [

𝑎′︷              ︸︸              ︷
( 𝑓 𝑜𝑦𝑥 + 𝑓 𝑜𝑦𝑦 𝑦𝑜𝑥 )

𝑏︷︸︸︷
𝑦𝑜𝑥 +

𝑎︷︸︸︷
𝑓 𝑜𝑦

𝑏′︷︸︸︷
𝑦𝑜𝑥𝑥 ]

2
(𝑥 − 𝑥𝑜 )2 .

The first-order necessary conditions satisfying the equality constraints are:

F.O.C. after diemsion reduction︷              ︸︸              ︷
0 = 𝑓 𝑜𝑥 + 𝑓 𝑜𝑦 𝑦𝑜𝑥︸              ︷︷              ︸
d 𝑓 [𝑥,𝑦 (𝑥) ]

d𝑥

��
𝑥=𝑥0

𝑦𝑜𝑥≡
d𝑦
d𝑥 |𝑥=𝑥𝑜

========================⇒
𝑧=𝑔 (𝑥𝑜 ,𝑦𝑜 )⇒ 𝑦𝑜𝑥 =−

𝑔𝑜𝑥
𝑔𝑜𝑦


𝑓 𝑜𝑥 − 𝑓 𝑜𝑦

𝑔𝑜𝑥
𝑔𝑜𝑦

= 0

𝑔 (𝑥𝑜 , 𝑦𝑜 ) = 𝑧


𝑓𝑦𝑜
𝑔𝑦𝑜

≡−𝜆
=========⇒


𝑓 𝑜𝑥 + 𝜆𝑔𝑜𝑥 = 0

𝑓 𝑜𝑦 + 𝜆𝑔𝑜𝑦 = 0

𝑔 (𝑥𝑜 , 𝑦𝑜 ) = 𝑧


𝑥=𝑥𝑜⇐======
𝑦=𝑦𝑜

F.O.C. by constructing Lagrangian function︷                                                          ︸︸                                                          ︷

0 =
𝜕L
𝜕𝑥

0 =
𝜕L
𝜕𝑦

0 =
𝜕L
𝜕𝜆


⇐ L ≡ 𝑓 (𝑥, 𝑦) + 𝜆[𝑔 (𝑥, 𝑦) − 𝑧 ]

︸                                                                                                                                                                                                             ︷︷                                                                                                                                                                                                             ︸
left and right ends are completely equivalent

.

This constructs the Lagrangian function , with 𝜆 being the Lagrange multiplier.

Substituting the first-order necessary conditions into the above nonlinear expansion, we have

𝑓 [𝑥, 𝑦(𝑥)] − 𝑓 [𝑥𝑜, 𝑦(𝑥𝑜)]
= 0 + ( 𝑓 𝑜𝑥𝑥 + 𝑓 𝑜𝑥𝑦𝑦𝑜𝑥) + [( 𝑓 𝑜𝑦𝑥 + 𝑓 𝑜𝑦𝑦𝑦𝑜𝑥)𝑦𝑜𝑥 + 𝑓 𝑜𝑦 𝑦𝑜𝑥𝑥],

= 𝑓 𝑜𝑥𝑥 + 2 𝑓 𝑜𝑥𝑦𝑦𝑜𝑥 + 𝑓 𝑜𝑦𝑦 (𝑦𝑜𝑥)2 + 𝑓 𝑜𝑦 𝑦𝑜𝑥𝑥

< 0 ⇔ maximum;

> 0 ⇔ minimum.

This is equivalent to:

𝑓 𝑜𝑥𝑥 + 2 𝑓 𝑜𝑥𝑦𝑦𝑜𝑥 + 𝑓 𝑜𝑦𝑦 (𝑦𝑜𝑥)2 + 𝑓 𝑜𝑦 𝑦𝑜𝑥𝑥 ,
𝑦𝑜𝑥=−

𝑔𝑜𝑥
𝑔𝑜𝑦

========⇒
𝑦𝑜𝑥𝑥=?

= 𝑓 𝑜𝑥𝑥 − 2 𝑓 𝑜𝑥𝑦
𝑔𝑜𝑥
𝑔𝑜𝑦
+ 𝑓 𝑜𝑦𝑦

(
𝑔𝑜𝑥
𝑔𝑜𝑦

)2
+ 𝑓 𝑜𝑦 𝑦𝑜𝑥𝑥 ,

= 𝑓 𝑜𝑥𝑥 − 2 𝑓 𝑜𝑥𝑦
𝑔𝑜𝑥
𝑔𝑜𝑦
+ 𝑓 𝑜𝑦𝑦

(
𝑔𝑜𝑥
𝑔𝑜𝑦

)2
+ 𝑓 𝑜𝑦

[
−𝑔

𝑜
𝑥𝑥

𝑔𝑜𝑦
+ 2

𝑔𝑜𝑥𝑦𝑔
𝑜
𝑥

(𝑔𝑜𝑦 )2
−
𝑔𝑜𝑦𝑦 (𝑔𝑜𝑥)2

(𝑔𝑜𝑦 )3

]
,

= 𝑓 𝑜𝑥𝑥 − 2 𝑓 𝑜𝑥𝑦
𝑔𝑜𝑥
𝑔𝑜𝑦
+ 𝑓 𝑜𝑦𝑦

(
𝑔𝑜𝑥
𝑔𝑜𝑦

)2
− 𝜆

[
−𝑔𝑜𝑥𝑥 + 2

𝑔𝑜𝑥𝑦𝑔
𝑜
𝑥

𝑔𝑜𝑦
−
𝑔𝑜𝑦𝑦 (𝑔𝑜𝑥)2

(𝑔𝑜𝑦 )2

]
,

=
[
𝑓 𝑜𝑥𝑥 (𝑔𝑜𝑦 )2 − 2 𝑓 𝑜𝑥𝑦𝑔𝑜𝑥𝑔𝑜𝑦 + 𝑓 𝑜𝑦𝑦 (𝑔𝑜𝑥)2 + 𝜆𝑔𝑜𝑥𝑥 (𝑔𝑜𝑦 )2 − 2𝜆𝑔𝑜𝑥𝑦𝑔𝑜𝑥𝑔𝑜𝑦 + 𝜆𝑔𝑜𝑦𝑦 (𝑔𝑜𝑥)2

]@
@
@

1
(𝑔𝑜𝑦 )2

,

=
(
𝑓 𝑜𝑥𝑥 + 𝜆𝑔𝑜𝑥𝑥

)
(𝑔𝑜𝑦 )2 − 2

(
𝑓 𝑜𝑥𝑦 + 𝜆𝑔𝑜𝑥𝑦

)
𝑔𝑜𝑥𝑔

𝑜
𝑦 +

(
𝑓 𝑜𝑦𝑦 + 𝜆𝑔𝑜𝑦𝑦

)
(𝑔𝑜𝑥)2,

= L𝑜𝑥𝑥 (𝑔𝑜𝑦 )2 − 2L𝑜𝑥𝑦𝑔𝑜𝑥𝑔𝑜𝑦 + L𝑜𝑦𝑦 (𝑔𝑜𝑥)2,
hhhhhhhhhhhhhhhhhhhhhhhhhh

= [L𝑜𝑥𝑥 (𝑔𝑜𝑦 )2] × 12 − 2(L𝑜𝑥𝑦𝑔𝑜𝑥𝑔𝑜𝑦 ) × 1 × 1 + [L𝑜𝑦𝑦 (𝑔𝑜𝑥)2] × 12,

= ?︸︷︷︸
no need of squaring

;

18



ide
ng

yf.
git

hu
b.i

o

1.1 Static Optimization Problem

or
= −

HHHHHHHHHHHHHH

no need of quadratic form︷                                      ︸︸                                      ︷[
? ? ?

] 
0 𝑔𝑜𝑥 𝑔𝑜𝑦
𝑔𝑜𝑥 L𝑜𝑥𝑥 L𝑜𝑥𝑦
𝑔𝑜𝑦 L𝑜𝑦𝑥 L𝑜𝑦𝑦

︸                 ︷︷                 ︸
bordered Hessian matrix


?
?
?

 ,

= −

bordered Hessian matrix︷                ︸︸                ︷�������
0 𝑔𝑜𝑥 𝑔𝑜𝑦
𝑔𝑜𝑥 L𝑜𝑥𝑥 L𝑜𝑥𝑦
𝑔𝑜𝑦 L𝑜𝑦𝑥 L𝑜𝑦𝑦

������� ≷ 0 ⇔ 𝑓 [𝑥, 𝑦(𝑥)] ≷ 𝑓 [𝑥𝑜, 𝑦(𝑥𝑜)] ⇔

bordered Hessian matrix︷                ︸︸                ︷�������
0 𝑔𝑜𝑥 𝑔𝑜𝑦
𝑔𝑜𝑥 L𝑜𝑥𝑥 L𝑜𝑥𝑦
𝑔𝑜𝑦 L𝑜𝑦𝑥 L𝑜𝑦𝑦

������� ≶ 0.

It can be seen that, excluding the dimension of the added “edge”, the objective function has a minimum value when
the 2 × 2 bordered Hessian determinant is less than 0, and a maximum value when the bordered Hessian determinant is
greater than 0. 4

Example 7. Demand decisions for different consumer goods in a perfectly competitive market environment

Suppose there are two commodities 𝐶1 and 𝐶2 available for consumption, and the corresponding prices 𝑃1, 𝑃2 and
nominal income 𝑃𝑄 are exogenous to the household sector. The utility function and budget constraint are:

max
𝐶1 ,𝐶2

𝑈 ≡ 𝑈 (𝐶1, 𝐶2),

s.t. 𝑃1𝐶1 + 𝑃2𝐶2 = 𝑃𝑄 ≡ 𝑀.

The problem can be solved by both elimination and construction of Lagrangian function. For this problem, the
differential method is simple and intuitive. From the geometric plane of 𝐶1 − 𝐶2, it is easy to know that the optimal
solution is the intersection of the indifference curve (the combination of 𝐶1 and 𝐶2 that can produce the same utility level)
and the budget constraint line.

The slope of the budget constraint for a given nominal income 𝑃𝑄 in monetary terms is:

𝑃1d𝐶1 + 𝑃2d𝐶2 = d(𝑃𝑄),
⇒ 𝑃1d𝐶1 + 𝑃2d𝐶2 = 0,

4This is a second-order sufficient condition for bivariate equality-constrained optimization problems. The derivation process is relatively cumbersome,
and there are two minor additions to be made:

1⃝ 
𝑓𝑦𝑜
𝑔𝑦𝑜
≡ −𝜆 ⇔ L = 𝑓 (𝑥, 𝑦) + 𝜆[𝑔 (𝑥, 𝑦) − 𝑧 ] ⇔ 𝑧 = 𝑔 (𝑥, 𝑦);

𝑓𝑦𝑜
𝑔𝑦𝑜
≡ +𝜆 ⇔ L = 𝑓 (𝑥, 𝑦) + 𝜆[𝑧 − 𝑔 (𝑥, 𝑦) ] ⇔ 𝑔 (𝑥, 𝑦) = 𝑧.

2⃝

O = 𝑓 [𝑥, 𝑦 (𝑥 ) ],
𝑓 𝑜𝑥 = 𝑓 𝑜𝑥 [𝑥, 𝑦 (𝑥 ) ] + 𝑓 𝑜𝑦 [𝑥, 𝑦 (𝑥 ) ]𝑦𝑜𝑥 ;

𝑦𝑜𝑥 = − 𝑔
𝑜
𝑥 [𝑥, 𝑦 (𝑥 ) ]
𝑔𝑜𝑦 [𝑥, 𝑦 (𝑥 ) ]

,

⇒ 𝑦𝑜𝑥𝑥 = − 1
𝑔𝑜𝑦
(𝑔𝑜𝑥𝑥 + 𝑔𝑜𝑥𝑦 𝑦𝑜𝑥 ) + (−𝑔𝑜𝑥 ) [−(𝑔𝑜𝑦 )−2 (𝑔𝑜𝑦𝑥 + 𝑔𝑜𝑦𝑦 𝑦𝑜𝑥 ) ],

= − 1
𝑔𝑜𝑦

(
𝑔𝑜𝑥𝑥 − 𝑔𝑜𝑥𝑦

𝑔𝑜𝑥
𝑔𝑜𝑦

)
+ (−𝑔𝑜𝑥 )

[
−(𝑔𝑜𝑦 )−2

(
𝑔𝑜𝑦𝑥 − 𝑔𝑜𝑦𝑦

𝑔𝑜𝑥
𝑔𝑜𝑦

)]
,

= − 1
𝑔𝑜𝑦

(
𝑔𝑜𝑥𝑥 − 𝑔𝑜𝑥𝑦

𝑔𝑜𝑥
𝑔𝑜𝑦

)
+ 𝑔𝑜𝑥 (𝑔𝑜𝑦 )−2

(
𝑔𝑜𝑦𝑥 − 𝑔𝑜𝑦𝑦

𝑔𝑜𝑥
𝑔𝑜𝑦

)
,

= − 𝑔
𝑜
𝑥𝑥

𝑔𝑜𝑦
+
𝑔𝑜𝑥𝑦𝑔

𝑜
𝑥

(𝑔𝑜𝑦 )2
+
𝑔𝑜𝑥𝑔

𝑜
𝑦𝑥

(𝑔𝑜𝑦 )2
−
𝑔𝑜𝑦𝑦 (𝑔𝑜𝑥 )2

(𝑔𝑜𝑦 )3
,

= − 𝑔
𝑜
𝑥𝑥

𝑔𝑜𝑦
+ 2
𝑔𝑜𝑥𝑦𝑔

𝑜
𝑥

(𝑔𝑜𝑦 )2
−
𝑔𝑜𝑦𝑦 (𝑔𝑜𝑥 )2

(𝑔𝑜𝑦 )3
.
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1.1 Static Optimization Problem

⇒ d𝐶2

d𝐶1
=

︷︸︸︷
−𝑃1

𝑃2︸︷︷︸
slope of

budget line

.

The slope of the indifference curve for fixed immediate utility𝑈 is:

d𝑈 = 𝑈𝑜1 d𝐶1 +𝑈𝑜2 d𝐶2,

⇒ 0 = 𝑈𝑜1 d𝐶1 +𝑈𝑜2 d𝐶2,

⇒ d𝐶2

d𝐶1
=

︷︸︸︷
−
𝑈𝑜1
𝑈𝑜2︸︷︷︸

slope of
indifference curve

,

where 𝑈𝑜𝑖 ≡
𝜕𝑈 ( ·)
𝜕𝐶𝑖

, 𝑖 = 1, 2 is the first-order partial derivative of the utility function with respect to consumer good 1 and
consumer good 2 at the optimal decision point.

Combine tangency condition and budget constraint:

Combining F.O.C. on 𝐶1 and 𝐶2︷                                   ︸︸                                   ︷
marginal substitution rate︷  ︸︸  ︷

𝑈𝑜1 /𝑈
𝑜
2 =

realtive price︷ ︸︸ ︷
𝑃1/𝑃2 ,

𝑃1𝐶1 + 𝑃2𝐶2 = 𝑃𝑄︸                   ︷︷                   ︸
F.O.C. on the Lagrange multiplier

.

Since 𝑈𝑜1 = 𝑈𝑜1 (𝐶1, 𝐶2) and 𝑈𝑜2 = 𝑈𝑜2 (𝐶1, 𝐶2), if the specific form of the utility function is given, the desired
consumption levels𝐶◦1 and𝐶◦2can be solved. The following chapters will discuss how to conduct comparative static analysis
of models with general functional forms, that is, the qualitative impact of changes in exogenous variables 𝑃1, 𝑃2 and 𝑃𝑄
on the desired consumption choice bundle.

The second-order sufficient condition can still be written by constructing the Lagrangian function L ≡ 𝑈 (𝐶1, 𝐶2) +
𝜆(𝑃𝑄 − 𝑃1𝐶1 − 𝑃2𝐶2) and rewriting the constraint condition as 𝑔(𝐶1, 𝐶2) ≡ 𝑃1𝐶1 + 𝑃2𝐶2 − 𝑃𝑄 = 0�

bordered Hessian matrix︷               ︸︸               ︷�������
0 𝑔𝑜1 𝑔𝑜2
𝑔𝑜1 L𝑜11 L𝑜12
𝑔𝑜2 L𝑜21 L𝑜22

������� =

�������
0 𝑃1 𝑃2

𝑃1 𝑈𝑜11 𝑈𝑜12
𝑃2 𝑈𝑜21 𝑈𝑜22

������� ,
= 2𝑃1𝑃2𝑈

𝑜
12 − 𝑃

2
1𝑈

𝑜
22 − 𝑃

2
2𝑈

𝑜
11,

≡ |𝐻̄ | ⋛ 0?

where 𝑔𝑜𝑖 ≡
𝜕𝑔 ( ·)
𝜕𝐶𝑖

, 𝑖 = 1, 2 represent the partial derivatives of the budget constraint curve for consumer goods 1 and
2 at the optimal decision point; L𝑜𝑖 𝑗 ≡

𝜕L(·)
𝜕𝐶𝑖 𝑗

, 𝑖, 𝑗 = {1, 2} represents the second-order partial derivatives and cross-
partial derivatives of the budget constraint curve function for consumer goods 1 and 2 at the optimal decision point;
𝑈𝑜𝑖 𝑗 ≡

𝜕𝑈 ( ·)
𝜕𝐶𝑖 𝑗

, 𝑖, 𝑗 = {1, 2} represents the second-order partial derivatives and cross-partial derivatives of the utility function
for consumer goods 1 and 2 at the optimal decision point.

The above second-order condition is closely related to the curvature of the indifference curve (i.e., the slope of the
slope), that is,

d𝐶2

d𝐶1
= −

𝑈𝑜1 (𝐶1, 𝐶2)
𝑈𝑜2 (𝐶1, 𝐶2)

=
𝑃1

𝑃2
,

⇒ d2𝐶2

d𝐶2
1

= −
𝜕𝑈𝑜

1 (𝐶1 ,𝐶2 (𝐶1 ) )
𝜕𝐶1

𝑈𝑜2 −𝑈
𝑜
1
𝜕𝑈𝑜

2 (𝐶1 ,𝐶2 (𝐶1 ) )
𝜕𝐶1

(𝑈𝑜2 )2
,
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1.1 Static Optimization Problem

= −

(
𝑈𝑜11 +𝑈12

d𝐶2
d𝐶1

)
𝑈𝑜2 −𝑈

𝑜
1

(
𝑈𝑜21 +𝑈22

d𝐶2
d𝐶1

)
(𝑈𝑜2 )2

,

= −

(
𝑈𝑜11−𝑈12

𝑃1
𝑃2

)
𝑈𝑜2 −𝑈

𝑜
1

(
𝑈𝑜21−𝑈22

𝑃1
𝑃2

)
(𝑈𝑜2 )2

,

= −

(
𝑈𝑜11 −𝑈12

𝑃1
𝑃2

)
𝑈𝑜2 −

(
𝑈𝑜2

𝑃1
𝑃2

) (
𝑈𝑜21 −𝑈22

𝑃1
𝑃2

)
(𝑈𝑜2 )2

,

=

𝑃1
𝑃2

(
𝑈𝑜21 −𝑈22

𝑃1
𝑃2

)
−

(
𝑈𝑜11 −𝑈12

𝑃1
𝑃2

)
𝑈𝑜2

,

=

[
𝑃1
𝑃2

(
𝑈𝑜21 −𝑈22

𝑃1
𝑃2

)
−

(
𝑈𝑜11 −𝑈12

𝑃1
𝑃2

)]
𝑃2

2

𝑈𝑜2 𝑃
2
2

,

=
𝑃1𝑃2𝑈

𝑜
21 − 𝑃

2
1𝑈22 − 𝑃2

2𝑈
𝑜
11 + 𝑃1𝑃2𝑈

𝑜
12

𝑈𝑜2 𝑃
2
2

,

=
2𝑃1𝑃2𝑈

𝑜
12 − 𝑃

2
1𝑈22 − 𝑃2

2𝑈
𝑜
11

𝑈𝑜2 𝑃
2
2

,

=
|𝐻̄ | ⋛ 0?
𝑈𝑜2 𝑃

2
2 > 0

⋛ 0?

When d2𝐶2
d𝐶2

1
> 0, the indifference curve is strictly convex, and the second-order condition is also greater than 0, so

the objective function has a maximum value. Therefore, objective function under equality constraints having a maximum
value requires the indifference curve to be strictly convex, but this is a necessary condition, because when the second-order
condition is equal to 0 (the indifference curve and the budget constraint line intersect on a line segment), there are multiple
intersection points, but they are also extreme values.

It is important to note that if the prices of good 1 and good 2 both rise or fall by the same amount (and, accordingly,
income rises or falls by the same amount), this will have no effect on the desired consumption outcome, because the budget
constraint has not changed in any way:

(𝜆𝑃1)𝐶1 + (𝜆𝑃2)𝐶2 = 𝜆(𝑃𝑄),
⇒ A𝜆(𝑃1𝐶1 + 𝑃2𝐶2) = A𝜆(𝑃𝑄),
⇒ 𝑃1𝐶1 + 𝑃2𝐶2 = 𝑃𝑄.

This means: 
𝜆0𝐶∗1 = 𝐶∗1 (𝑃1, 𝑃2, 𝑀) = (𝜆𝑃1, 𝜆𝑃2, 𝜆𝑃𝑄);
𝜆0𝐶∗2 = 𝐶∗2 (𝑃1, 𝑃2, 𝑀) = (𝜆𝑃1, 𝜆𝑃2, 𝜆𝑃𝑄).

The above optimal consumer demand equation has the characteristic of zero-order homogeneity. We can equate
monetary income 𝑃𝑄with money supply (the principle can be referred to the quantity theory of money: 𝑀𝑉 = 𝑃𝑄),
which shows that the consumer demand equation points to the economic meaning of “monetary neutrality”, that is, an
increase in money supply only brings about an equal increase in prices, but does not have a real qualitative impact on
actual economic activities.

If we slightly modify Example 1 in this chapter, we can obtain a similar double-variable equality-constrained opti-
mization problem as this example:

max
𝑄𝑠1 ,𝑄𝑠2

Π ≡ R(𝑄𝑠1, 𝑄𝑠2) − C(𝑄𝑠1, 𝑄𝑠2),

s.t. 𝑄𝑠1 +𝑄𝑠2 = 𝑄̄.

Because of the constraint of production quota 𝑄̄, the selection variables 𝑄𝑠1 and 𝑄𝑠2 are no longer independent, and
21
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1.1 Static Optimization Problem

the free optimum turns to the constrained optimum.

Example 8. Consumer demand and labor supply in a perfectly competitive market

The utility function of the “representative” household sector is:

max
𝐶,𝐿𝑠

Type 1: 𝑈≡𝑈 (𝐶,1−𝐿𝑠 ) ,

𝑈𝑜
𝐶

> 0, 𝑈𝑜
1−𝐿𝑠 > 0,

𝑈𝑜
𝐶𝐶

< 0, 𝑈𝑜
1−𝐿𝑠 ,1−𝐿𝑠 < 0,

𝑈𝑜
𝐶,1−𝐿𝑠 > 0, 𝑈𝑜

1−𝐿𝑠 ,𝐶 > 0.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Type 2: 𝑈≡𝑈 (𝐶, 𝐿𝑠 ) ,

𝑈𝑜
𝐶

> 0, 𝑈𝑜
𝐿𝑠

< 0,

𝑈𝑜
𝐶𝐶

< 0, 𝑈𝑜
𝐿𝑠𝐿𝑠

< 0,

𝑈𝑜
𝐶𝐿𝑠

< 0, 𝑈𝑜
𝐿𝑠𝐶

< 0.

s.t. 𝑃𝑒𝐶︸︷︷︸
expected expenditure

= 𝑊𝐿𝑠︸︷︷︸
wage income

,

where 𝐶 represents consumption demand. Note that it is different from the symbol C used to represent cost. In addition,
it does not have a subscript 𝑑 like other supply and demand variables, because there is no need to use symbols like 𝐶𝑠 to
distinguish consumption supply from output; 𝐿𝑠 is for labor supply, or to allow leisure 1 − 𝐿𝑠 to enter the utility function
𝑈, 𝑃𝑒 is the instantaneous expectation or point expectation about prices, 𝑊 is the nominal wage, and subscripts 𝐶 and 𝐿
represent the first-order, second-order, or cross-partial derivatives of the utility function with respect to the corresponding
elements (the positive or negative assumptions are the “approximate” sufficient conditions for the objective function to
achieve the maximum value). The objective functions of type 1 and type 2 are slightly different. The former enters the
utility function with labor and the latter with leisure. After standardizing the labor time, 1 − 𝐿𝑠 is leisure, which, like
consumption, will bring positive utility.

To solve the optimization problem with two choice variables and an equality constraint, the elimination method or
the Lagrange multiplier method can be used.

i) Since the objective function and constraints are very simple, the elimination method is more convenient. Taking the
objective function of type 1 as an example, substituting the consumer demand variable 𝐶 = 𝑊

𝑃𝑒
𝐿𝑠 solved by the equality

constraint, it is converted into an unconstrained single variable optimization problem:

max
𝐿𝑠

𝑈 ≡ 𝑈
©­­­­­«

𝐶︷︸︸︷
𝑊

𝑃𝑒
𝐿𝑠︸︷︷︸, 1 − 𝐿𝑠

ª®®®®®¬
.

The first-order necessary condition is:

d𝑈
d𝐿𝑠

= 𝑈𝑜𝐶
𝑊

𝑃𝑒
−𝑈𝑜1−𝐿𝑠 = 0 ⇒

︷                 ︸︸                 ︷
𝑈𝑜1−𝐿𝑠 (𝐶, 1 − 𝐿𝑠)
𝑈𝑜𝐶 (𝐶, 1 − 𝐿𝑠)︸                 ︷︷                 ︸

marginal rate of substitution

=

︷︸︸︷
𝑊

𝑃𝑒︸︷︷︸
expected real wage

.

The second-order sufficient condition is:

d(d𝑈/d𝐿𝑠)
d𝐿𝑠

=
d

d𝐿𝑠


𝑊

𝑃𝑒
𝑈𝐶

©­­­­­«
𝐶︷︸︸︷

𝑊

𝑃𝑒
𝐿𝑠︸︷︷︸, 1 − 𝐿𝑠

ª®®®®®¬
−𝑈1−𝐿𝑠

©­­­­­«
𝐶︷︸︸︷

𝑊

𝑃𝑒
𝐿𝑠︸︷︷︸, 1 − 𝐿𝑠

ª®®®®®¬

,

=
𝑊

𝑃𝑒

(
𝑊

𝑃𝑒
𝑈𝑜𝐶𝐶 −𝑈

𝑜
𝐶,1−𝐿𝑠

)
−

(
𝑊

𝑃𝑒
𝑈𝑜1−𝐿𝑠 ,𝐶 −𝑈

𝑜
1−𝐿𝑠 ,1−𝐿𝑠

)
,

=

(
𝑊

𝑃𝑒

)2
𝑈𝑜𝐶𝐶 +𝑈

𝑜
1−𝐿𝑠 ,1−𝐿𝑠 − 2

𝑊

𝑃𝑒
𝑈𝑜𝐶,1−𝐿𝑠 > 0.

Please pay attention and think for a moment: when converted into the optimization problem of an unconstrained
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1.1 Static Optimization Problem

single choice variable, according to the conclusion of the previous analysis, there is a minimum value when the second-
order derivative is greater than 0. Why is the second-order derivative greater than 0 here still determined to be a maximum
value?

ii) The Lagrange multiplier method will produce the same result. Introduce the multiplier 𝜆 to construct a new
function:

max
𝐶,𝐿𝑠 ,𝜆

L ≡ 𝑈 (𝐶, 1 − 𝐿𝑠) + 𝜆
(
𝑊

𝑃𝑒
𝐿𝑠 − 𝐶

)
.

The first-order necessary conditions are:
𝜕L
𝜕𝐶

= 𝑈𝑜𝐶 − 𝜆 = 0,

𝜕L
𝜕𝐿𝑠

= −𝑈𝑜1−𝐿𝑠 + 𝜆
𝑊

𝑃𝑒
= 0,

𝜕L
𝜕𝜆

=
𝑊

𝑃𝑒
𝐿𝑠 − 𝐶 = 0.


⇒


𝑈𝑜1−𝐿𝑠 (𝐶, 1 − 𝐿𝑠)
𝑈𝑜𝐶 (𝐶, 1 − 𝐿𝑠)

=
𝑊

𝑃𝑒
,

𝐶 =
𝑊

𝑃𝑒
𝐿𝑠 .

According to the constructed Lagrangian and the constraint 𝑔(𝐶, 𝐿𝑠) ≡ (𝑊/𝑃𝑒)𝐿𝑠−𝐶 = 0, the second-order sufficient
condition is:

bordered Hessian determinant︷                  ︸︸                  ︷�������
0 𝑔𝑜𝐶 𝑔𝑜𝐿
𝑔𝑜𝐶 L𝑜𝐶𝐶 L𝑜𝐶𝐿
𝑔𝑜𝐿 L𝑜𝐿𝐶 L𝑜𝐿𝐿

������� =

�������
0 −1 𝑊

𝑃𝑒

−1 𝑈𝑜𝐶𝐶 −𝑈𝑜𝐶,1−𝐿𝑠
𝑊
𝑃𝑒
−𝑈𝑜1−𝐿𝑠 ,𝐶 𝑈𝑜1−𝐿𝑠 ,1−𝐿𝑠

������� ,
= 0 + 𝑊

𝑃𝑒
𝑈𝑜𝐶,1−𝐿𝑠 +

𝑊

𝑃𝑒
𝑈𝑜1−𝐿𝑠 ,𝐶 − 0 −𝑈𝑜1−𝐿𝑠 ,1−𝐿𝑠 −

(
𝑊

𝑃𝑒

)2
𝑈𝑜𝐶𝐶 ,

= 2
𝑊

𝑃𝑒
𝑈𝑜𝐶,1−𝐿𝑠 −

(
𝑊

𝑃𝑒

)2
𝑈𝑜𝐶𝐶 −𝑈

𝑜
1−𝐿𝑠 ,1−𝐿𝑠 > 0.

Notice:

(1) The utility function is concave so the extreme value is also the global maximum.

(2) The indifference curve is strictly convex so there is a maximum.

(3) The second-order conditions for single-variable optimization without constraints are opposite in sign to the second-
order conditions for double-variable optimization under equality constraints.

To make it easier to see that the second-order conditions Example 7 and Example 8 are exactly the same in form, the
subscripts in the former are reduced to the relevant variables, and both sides of the second-order conditions in the latter
are multiplied by 𝑃2

𝑒, as shown below:{
2𝑃1𝑃2𝑈

𝑜
𝐶1,𝐶2 − 𝑃

2
1𝑈

𝑜
𝐶2,𝐶2 − 𝑃

2
2𝑈

𝑜
𝐶1,𝐶1 > 0;

2𝑊𝑃𝑒𝑈𝑜𝐶,1−𝐿 −𝑊
2𝑈𝑜𝐶,𝐶 − 𝑃

2
𝑒𝑈

𝑜
1−𝐿𝑠 ,1−𝐿𝑠 > 0.

Regardless of whether we choose two different consumer goods or choose consumption leisure, we follow the idea of
[8, pp.376-377] to discuss this in detail. In a nutshell, it ensures that the indifference curve is strictly convex to the origin,
so that it has a unique intersection with the budget constraint line, so that the objective function obtains a unique maximum
value under the constraint conditions.

(4) Combining the first-order conditions and equality constraints allows solving for the optimal values   of the choice
variables (consumption demand and labor supply), explicit solution depends on the specific form of the utility function.

II. Multi-Variable Questions with Single Equality Constraint

Assume that the objective function and constraints for more than two variables but only a single equality constraint
are:

max←−−→
min
O = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑚),
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s.t. 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0.

When there are 𝑚 choice variables and one equality constraint, the derivation process of the necessary and sufficient
conditions for optimization is similar to that of two choice variables and one equality constraint. Now we can directly
construct the Lagrangian function, that is,

L ≡ 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑚) + 𝜆[0 − 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑚)] .

Not counting the dimension of the added “edge”, when the leading principal minors of the 𝑚 × 𝑚 bordered Hessian
determinant are all positive, there is a minimum, that is,

minimum



2nd-order leading principal minor:

�������
0 𝑔𝑜𝑥1 𝑔𝑜𝑥2

𝑔𝑜𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2

𝑔𝑜𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2

������� < 0,

and

3rd-order leading principal minor:

���������
0 𝑔𝑜𝑥1 𝑔𝑜𝑥2 𝑔𝑜𝑥3

𝑔𝑜𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2 L𝑜𝑥1𝑥3

𝑔𝑜𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2 L𝑜𝑥2𝑥3

𝑔𝑜𝑥3 L𝑜𝑥3𝑥1 L𝑜𝑥3𝑥2 L𝑜𝑥3𝑥3

��������� < 0,

and

4th-order leading principal minor:

������������

0 𝑔𝑜𝑥1 𝑔𝑜𝑥2 𝑔𝑜𝑥3 𝑔𝑜𝑥4

𝑔𝑜𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2 L𝑜𝑥1𝑥3 L𝑜𝑥1𝑥4

𝑔𝑜𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2 L𝑜𝑥2𝑥3 L𝑜𝑥2𝑥4

𝑔𝑜𝑥3 L𝑜𝑥3𝑥1 L𝑜𝑥3𝑥2 L𝑜𝑥3𝑥3 L𝑜𝑥3𝑥4

𝑔𝑜𝑥4 L𝑜𝑥4𝑥1 L𝑜𝑥4𝑥2 L𝑜𝑥4𝑥3 L𝑜𝑥4𝑥4

������������
< 0,

and
...



positive definite

Not counting the dimension of the added “edge”, when the leading principal minors of the 𝑚 × 𝑚 bordered Hessian
determinant are negative, positive, negative, ... in order, there is a maximum, that is,

maximum



2nd-order leading principal minor:

�������
0 𝑔𝑜𝑥1 𝑔𝑜𝑥2

𝑔𝑜𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2

𝑔𝑜𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2

������� > 0,

and

3rd-order leading principal minor:

���������
0 𝑔𝑜𝑥1 𝑔𝑜𝑥2 𝑔𝑜𝑥3

𝑔𝑜𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2 L𝑜𝑥1𝑥3

𝑔𝑜𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2 L𝑜𝑥2𝑥3

𝑔𝑜𝑥3 L𝑜𝑥3𝑥1 L𝑜𝑥3𝑥2 L𝑜𝑥3𝑥3

��������� < 0,

and

4th-order leading principal minor:

������������

0 𝑔𝑜𝑥1 𝑔𝑜𝑥2 𝑔𝑜𝑥3 𝑔𝑜𝑥4

𝑔𝑜𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2 L𝑜𝑥1𝑥3 L𝑜𝑥1𝑥4

𝑔𝑜𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2 L𝑜𝑥2𝑥3 L𝑜𝑥2𝑥4

𝑔𝑜𝑥3 L𝑜𝑥3𝑥1 L𝑜𝑥3𝑥2 L𝑜𝑥3𝑥3 L𝑜𝑥3𝑥4

𝑔𝑜𝑥4 L𝑜𝑥4𝑥1 L𝑜𝑥4𝑥2 L𝑜𝑥4𝑥3 L𝑜𝑥4𝑥4

������������
> 0,

and
...



negative definite

After observation, it is not difficult to find that:
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1.1 Static Optimization Problem

(1) The bordered Hessian matrix of a multi-variable promblem with single equality constraint is symmetric along the
main diagonal;

(2) Because the equality constraint is meaningful only for at least two choice variables, let’s start with the second-order
leading principal minor of the bordered Hessian determinant. If the leading principal minors of each order are negative,
the matrix is positive definite and the objective function has a minimum value. (which is the opposite of the situation when
there is no constraint, because the bordered Hessian determinant has a negative sign in addition to the added edge);

(3) If the leading principal minors of each order of the bordered Hessian determinant is alternately positive and
negative. More precisely, the leading principal minors of the even-order are positive and those of the odd-order are negative,
the matrix is negative definite and the objective function has a maximum value

Example 9. A basket of consumer choices and the overall price level under monopolistic competition in product
markets

Note that it is the enterprise sector that has monopoly power in the product market, while the household sector can
only choose consumption demand according to the budget constraint to optimize the goal of a basket of consumer goods.
The objective function for the total consumption can be either continuous aggregation or discrete aggregation.

i) Continuous aggregation

Different consumer goods under monopolistic competition are not completely substitutable, and there is a certain
elasticity of substitution (this term will be derived and further introduced in the examples of comparative static analysis),
which is simply set to 𝜖 here. Consumers need to choose a basket of consumer goods. Since this basket of consumer
goods is symmetrical, it is actually an optimization problem of a single variable under given budget constraint. For a better
comparison, the dual property of the optimization problem is used here, that is, given a budget constraint to make a basket
of goods as large as possible and given a basket of goods to make expenditures as small as possible will equally lead to the
first-order conditions of the optimization. This set of dual optimization problems are:

max
𝐶𝑖

Dixit-Stiglitz aggregated CES function︷                      ︸︸                      ︷
𝐶 ≡

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1

,
dual⇐==⇒ min

𝐶𝑖

𝑄=𝐶+XXXX𝐼+𝐺+𝛿𝐾︷     ︸︸     ︷
𝑃𝑄 = 𝑃𝐶 =

´ 1
0 𝑃𝑖𝐶𝑖d𝑖,

s.t.
´ 1

0 𝑃𝑖𝐶𝑖d𝑖 ≤ 𝑃𝑄 = 𝑃𝐶. s.t.
(´ 1

0 𝐶
𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1

≥ 𝐶.

CES refers to constant elasticity of substitution, that is, the elasticity of substitution between different consumer
goods 𝜖 is a constant. A more detailed and comprehensive introduction to it will be left for Chapter 3. The equilibrium
condition of the product market (that is, the national income identity) is 𝑄 = 𝐶, and the total income 𝑄 is the given
resource endowment. Investment, government expenditure and depreciation are omitted, but will be restored to a certain
extent when the classical model and Keynes model are introduced later. It seems that the inequality constraint problem
is encountered here in advance. However, there is an Inada hypothesis in economics, which ensures 𝐶𝑖 > 0, excluding
corner point solutions, so the budget constraint takes an equal sign (the constraint is tight). The detailed discussion on
the conversion of inequality constraints into equality constraints will be left later, and the reader only needs to have an
impression here. Therefore, the Lagrange multiplier method is directly used to solve:

Lmin =
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖 + 𝑃

[
𝐶 −

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1
]
.

F.O.C.
=====⇒ 0 =

dLmin

d𝐶𝑖
,

⇒ 𝑃𝑖 = 𝑃
𝜖

𝜖 − 1

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1 −1
𝜖 − 1
𝜖

𝐶
𝜖 −1
𝜖 −1

𝑖 ,

⇒ 𝑃𝑖 = 𝑃

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1 −1

𝐶
𝜖 −1
𝜖 −1

𝑖 ,
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1.1 Static Optimization Problem

⇒ 𝑃𝑖 = 𝑃

[(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1
] 1

𝜖

𝐶
−1
𝜖

𝑖 ,

⇒ 𝑃𝑖
𝑃

=

(
𝐶𝑖
𝐶

) −1
𝜖

,

⇒ 𝐶𝑖 =

(
𝑃𝑖
𝑃

)−𝜖
𝐶.

In this way, we can get the demand curve for consumer product 𝑖 in a monopolistic competition market environment.
Substituting it into the objective function, we can get the functional relationship between the total price level and the price
of a single commodity 𝑖: ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖 = 𝑃𝐶,

⇒
ˆ 1

0
𝑃𝑖

[(
𝑃𝑖
𝑃

)−𝜖
𝐶

]
d𝑖 = 𝑃𝐶,

⇒
ˆ 1

0
𝑃𝑖

(
𝑃𝑖
𝑃

)−𝜖
d𝑖 = 𝑃,

⇒ 𝑃 =

(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
1−𝜖

.

The above solution is the expenditure minimization problem. Based on the specific meaning of the Lagrange multiplier
(the price of the consumption basket 𝐶), we can quickly get the demand curve for consumer good 𝑖 and the price index.
Assuming the budget is 𝑀 , we can also get the the demand function for a certain heterogeneous product 𝑖 in the basket
from maximizing the basket.

Lmax =

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1

+ 𝜆
(
𝑀 −
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖

)
.

F.O.C.
=====⇒ dLmax

d𝐶𝑖
= 0,

⇒ 𝜖

𝜖 − 1

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1 −1
𝜖 − 1
𝜖

𝐶
𝜖 −1
𝜖 −1

𝑖 − 𝜆𝑃𝑖 = 0,

⇒
(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 1

𝜖 −1

𝐶
− 1

𝜖

𝑖 − 𝜆𝑃𝑖 = 0,

⇒
[(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1
] 1

𝜖

𝐶
− 1

𝜖

𝑖 − 𝜆𝑃𝑖 = 0,

⇒ 𝐶
1
𝜖 𝐶
− 1

𝜖

𝑖 − 𝜆𝑃𝑖 = 0,

⇒ 𝐶
− 1

𝜖

𝑖 = 𝜆𝑃𝑖𝐶
− 1

𝜖
symmetry
⇐======⇒ 𝐶

− 1
𝜖

𝑗 = 𝜆𝑃 𝑗𝐶
− 1

𝜖 ,

⇒
(
𝐶𝑖
𝐶 𝑗

)− 1
𝜖

=
𝑃𝑖
𝑃 𝑗
,

⇒ 𝐶𝑖 =

(
𝑃𝑖
𝑃 𝑗

)−𝜖
𝐶 𝑗 .

This is the association between any two goods 𝑖 and 𝑗 . Under the tight constraint, the budget 𝑀 is the total expenditure
on each consumer good:

𝑀 =
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖,

=
ˆ 1

0
𝑃𝑖

(
𝑃𝑖
𝑃 𝑗

)−𝜖
𝐶 𝑗𝑡d𝑖,
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1.1 Static Optimization Problem

= 𝐶 𝑗𝑃𝜖𝑗

ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖,

⇒ 𝐶 𝑗 =
𝑀𝑃−𝜖𝑗´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

symmetry
⇐======⇒ 𝐶𝑖 =

𝑀𝑃−𝜖𝑖´ 1
0 𝑃

1−𝜖
𝑖 d𝑖

.

𝐶 =

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1

=

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑗 d 𝑗
) 𝜖

𝜖 −1

,

=


ˆ 1

0

(
𝑀𝑃−𝜖𝑗´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

) 𝜖 −1
𝜖

d 𝑗


𝜖
𝜖 −1

= 𝑀


ˆ 1

0

(
𝑃−𝜖𝑗´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

) 𝜖 −1
𝜖

d 𝑗


𝜖
𝜖 −1

= 𝑀


ˆ 1

0

𝑃1−𝜖
𝑗(´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

) 𝜖 −1
𝜖

d 𝑗


𝜖

𝜖 −1

,

= 𝑀


(´ 1

0 𝑃
1−𝜖
𝑗 d 𝑗

)
(´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

) 𝜖 −1
𝜖


𝜖

𝜖 −1

= 𝑀


(´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

)
(´ 1

0 𝑃
1−𝜖
𝑖 d𝑖

) 𝜖 −1
𝜖


𝜖

𝜖 −1

= 𝑀


(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

)1− 𝜖 −1
𝜖


𝜖

𝜖 −1

,

= 𝑀


(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
𝜖


𝜖
𝜖 −1

= 𝑀

(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
𝜖 −1

.

Define the total expenditure of a basket of consumption as the total price index 𝑃 ≡ 𝑀 |𝐶=1, then:

𝐶 = 𝑀

(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
𝜖 −1

,

m

1 = 𝑃

(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
𝜖 −1

,

⇒ 𝑃 =

(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
1−𝜖

.

𝑀 =
ˆ 1

0
𝑃𝑖𝐶𝑖𝑑d𝑖 =

ˆ 1

0
𝑃𝑖

(
𝑃𝑖
𝑃 𝑗

)−𝜖
𝐶 𝑗d𝑖,

= 𝐶 𝑗𝑃
𝜖
𝑗

ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖 = 𝐶 𝑗𝑃𝜖𝑗


(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
1−𝜖


1−𝜖

,

= 𝐶 𝑗𝑃
𝜖
𝑗 𝑃

1−𝜖 ,

⇒ 𝐶 𝑗 =
𝑀

𝑃𝜖𝑗 𝑃
1−𝜖

symmetry
⇐======⇒ 𝐶𝑖 =

𝑀

𝑃𝜖𝑖 𝑃
1−𝜖 .

𝐶 =

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖𝑑 d𝑖
) 𝜖

𝜖 −1

=

[ˆ 1

0

(
𝑀

𝑃𝜖𝑖 𝑃
1−𝜖

) 𝜖 −1
𝜖

d𝑖

] 𝜖
𝜖 −1

=
𝑀

𝑃1−𝜖

(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 𝜖
𝜖 −1

,

=
𝑀

𝑃1−𝜖


(ˆ 1

0
𝑃1−𝜖
𝑖 d𝑖

) 1
1−𝜖


−𝜖

=
𝑀

𝑃1−𝜖 𝑃
−𝜖 =

𝑀

𝑃
,

⇒ 𝑀 = 𝑃𝐶,

m

⇒
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖 = 𝑃𝐶;

𝐶𝑖 =
𝑀

𝑃𝜖𝑖 𝑃
1−𝜖 =

𝑃𝐶

𝑃𝜖𝑖 𝑃
1−𝜖 =

𝐶

𝑃𝜖𝑖 𝑃
−𝜖 ,
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1.1 Static Optimization Problem

⇒ 𝐶𝑖 =

(
𝑃𝑖
𝑃

)−𝜖
𝐶.

This also derives the demand curve of consumer good 𝑖 under a monoplistic competition environment. Another
convenient approach comes from that the Lagrange multipliers of the dual problems are reciprocals of each other [8,
p.437]. In this way, the Lagrangian function is:

Lmax =

(ˆ 1

0
𝐶

𝜖 −1
𝜖

𝑖 d𝑖
) 𝜖

𝜖 −1

+ 1
𝑃

(
𝑀 −
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖

)
.

ii) Discrete aggregation

A basket of goods or the total price level can be a continuous sum as shown above, or a discrete sum. It is also an
optimization problem of converting inequality constraints into equality constraints based on economic assumptions:

max
𝐶𝑖

𝐶 ≡
(

1
𝐼

∑𝐼
𝑖=1 𝐶

1
1+Λ
𝑖

)1+Λ
,

dual⇐==⇒ min
𝐶𝑖

𝑃𝐶 ≡
∑𝐼
𝑖=1 𝑃𝑖𝐶𝑖 ,

s.t.
∑𝐼
𝑖=1 𝑃𝑖𝐶𝑖 ≤ 𝑃𝑄 ≡ 𝑀. s.t.

(
1
𝐼

∑𝐼
𝑖=1 𝐶

1
1+Λ
𝑖

)1+Λ
≥ 𝐶.

These are the dual problems about optimal consumption choice in the case of discrete aggregation. The Lagrangian
functions are:

Lmax =

(
1
𝐼

𝐼∑
𝑖=1

𝐶
1

1+Λ
𝑖

)1+Λ

+ 1
𝑃

(
𝑀 −

𝐼∑
𝑖=1

𝑃𝑖𝐶𝑖

)
;

m

Lmin =
𝐼∑
𝑖=1

𝑃𝑖𝐶𝑖 + 𝑃
𝐶 −

(
1
𝐼

𝐼∑
𝑖=1

𝐶
1

1+Λ
𝑖

)1+Λ ,
Note the reciprocal Lagrange multipliers in this dual problem. We can still use the latter to deduce:

⇒ 𝑃𝑖 = 𝑃(1 + Λ)
(
1
𝐼

𝐼∑
𝑖=1

𝐶
1

1+Λ
𝑖

)1+Λ−1
1

1 + Λ𝐶
1

1+Λ −1
𝑖

1
𝐼
,

⇒ 𝐼 × 𝑃𝑖 = 𝑃

(
1
𝐼

𝐼∑
𝑖=1

𝐶
1

1+Λ
𝑖

)1+Λ
Λ

1+Λ

𝐶
−Λ
1+Λ
𝑖 ,

⇒ 𝐼 × 𝑃𝑖 = 𝑃𝐶
Λ

1+Λ𝐶
−Λ
1+Λ
𝑖 ,

⇒ 𝐼 × 𝑃𝑖
𝑃

=

(
𝐶𝑖
𝐶

) −Λ
1+Λ
,

⇒ 𝐶𝑖 =

(
𝐼 × 𝑃𝑖

𝑃

) 1+Λ
−Λ
𝐶;

𝐼∑
𝑖=1

𝑃𝑖𝐶𝑖 = 𝑃𝐶,

⇒
𝐼∑
𝑖=1

𝑃𝑖

[(
𝐼 × 𝑃𝑖

𝑃

) 1+Λ
−Λ
𝐶

]
= 𝑃𝐶,

⇒ 𝐼
1+Λ
−Λ

𝐼∑
𝑖=1

𝑃
1− 1+Λ

Λ
𝑖 = 𝑃1− 1+Λ

Λ ,
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1.1 Static Optimization Problem

⇒ 𝑃 = 𝐼1+Λ
(
𝐼∑
𝑖=1

𝑃
1
−Λ
𝑖

)−Λ
,

⇒ 𝑃 = 𝐼

(
1
𝐼

𝐼∑
𝑖=1

𝑃
1
−Λ
𝑖

)−Λ
.

This results in essentially the same but slightly different consumer demand curve and overall price level function,
where the elasticity of substitution between 𝐼 different commodities is 1+ 1

Λ , and Λ is the desired cost markup [34, pp.360-
361]�

Example 10. Consumption demand, labor supply, and demand for real money balances in a centrally planned
production environment

Money has the functions of pricing, transaction and storage. When used for transactions, it saves labor time for search-
ing for matches and increases leisure time, which makes it have positive utility. [13, ch.2.5.3] introduced the following
optimization problem of money in the utility function (MIU) when discussing the optimal monetary policy of the classical
model:

max
𝐶,𝑀𝑑/𝑃,𝐿𝑠

𝑈 ≡ 𝑈
(
𝐶,
𝑀𝑑
𝑃
, 𝐿𝑠

)
,

s.t. 𝑄𝑠 = 𝐴𝐿
1−𝛼
𝑑 .

The constraint condition is the total resource constraint; the choice variables include not only the consumer demand
and the labor supply, but also the real money balance.

When the money market, product market, and labor market are cleared, the following equilibrium conditions exist:
𝑀𝑠 = 𝑀𝑑 = 𝑀,

𝑄𝑠 = 𝑄𝑑 = 𝐶,

𝐿𝑠 = 𝐿𝑑 = 𝐿.

Therefore, the three-variable optimization problem is:

max
𝐶,𝑀/𝑃,𝐿

𝑈 ≡ 𝑈
(
𝐶,
𝑀

𝑃
, 𝐿

)
,

s.t. 𝐶 = 𝐴𝐿1−𝛼 .

Construct a Lagrangian function :

L ≡ 𝑈
(
𝐶,
𝑀

𝑃
, 𝐿

)
+ 𝜆(𝐴𝐿1−𝛼 − 𝐶).

By taking the derivatives of the variables in turn, we can obtain four first-order necessary conditions:
𝜕L
𝜕𝐶

= 𝑈𝐶 − 𝜆 = 0,

𝜕L
𝜕𝐿

= 𝑈𝐿 + (1 − 𝛼)𝜆𝐴𝐿−𝛼 = 0,

𝜕L
𝜕𝑀/𝑃 = 𝑈𝑀/𝑃 = 0,

𝜕L
𝜕𝜆

= 𝐴𝐿1−𝛼 − 𝐶 = 0.

The last first-order condition is the social budget constraint. Tiding-up:

marginal rate
of substitution︷    ︸︸    ︷
−𝑈𝐿/𝑈𝐶 =

marginal product︷           ︸︸           ︷
(1 − 𝛼)𝐴𝐿−𝛼;
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1.1 Static Optimization Problem

𝑈𝑀/𝑃︸︷︷︸
marginal utility

= 0︸︷︷︸
marginal cost

.

The marginal rate of substitution between labor and consumption is equal to the marginal product of labor, which
is essentially the same as the first-order condition of the decentralized competitive economy in Example 8, that is, the
decentralized competitive equilibrium configuration is Pareto optimal (the first welfare theorem); conversely, for different
market arrangements, equilibrium prices that support Pareto optimality can also be found (the second welfare theorem).
In addition, the above first-order condition shows that the marginal utility of real money balances is equal to the social
marginal cost of money “production”.

The specific form of the utility function is not given above. The most common ones are the separable and additive
type and the split-and-combined type:

𝑈 ≡ 𝑈
(
𝐶,
𝑀

𝑃
, 𝐿

)
,

= 𝑓 1 (𝐶) + 𝑓 2
(
𝑀

𝑃

)
+ 𝑓 3 (𝐿),

𝜎≠1−−−−→
𝜈≠1

=
𝐶1− 1

𝜎 − 1
1 − 1

𝜎

+ (𝑀/𝑃)
1− 1

𝜈 − 1
1 − 1

𝜈

− 𝐿1+ 1
𝜑

1 + 1
𝜑

,

𝜎=1
====⇒
𝜈=1

= log𝐶 + log
𝑀

𝑃
− 𝐿1+ 1

𝜑

1 + 1
𝜑︸                        ︷︷                        ︸

separable and additive

.



vs.



𝑈 ≡ 𝑈
(
𝐶,
𝑀

𝑃
, 𝐿

)
,

= 𝑓 1
(
𝐶,
𝑀

𝑃

)
+ 𝑓 2 (𝐿),

𝜎≠1
=

{[
(1 − 𝛼)𝐶1− 1

𝜈 + 𝛼
(
𝑀
𝑃

)1− 1
𝜈

] 1
1− 1

𝜈

}1− 1
𝜎

− 1

1 − 1
𝜎

− 𝐿1+ 1
𝜑

1 + 1
𝜑

,

𝜎=1
= 𝐶1−𝛼

(
𝑀

𝑃

)𝛼
− 𝐿1+ 1

𝜑

1 + 1
𝜑

.︸                                                      ︷︷                                                      ︸
split-and-combined

In the separable and additive function, 1/𝜎 represents the constant relative risk aversion coefficient, 𝜎 ≡ − 𝑈𝐶 ( ·)
𝐶𝑈𝐶𝐶 ( ·)

represents the intertemporal elasticity of substitution of consumption, 𝜈 represents the elasticity of monetary demand, 𝜑
represents the Frisch elasticity of labor supply; In the split-and-combined function, 𝜈 is the substitution elasticity between
consumption and real money balance, 𝛼 is the realtive weight on real money balance. These parameters mostly express
the connotation of comparative analysis. Chapter 3 will further explore why the functions including the constant elasticity
of substitution (CES) or the constant intertemporal elasticity of substitution (CIES) are transformed into logarithmic form
or Cobb-Douglas form.

III. Multi-Variable Questions with Multiple Equality Constraints

Assume that there are 𝑚 (more than two) variables and 𝑛 (multiple) equality constraints. The objective function and
the constraints are:

max←−−→
min
O = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑚),

s.t. 𝑔1 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0,

𝑔2 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0,
...

𝑔𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 0.

For 𝑛 constraints, we can introduce 𝑛 Lagrange multipliers (note that 𝑛 ≤ 𝑚 − 1 to make the constraints meaningful):

L ≡ 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑚) +
𝑛∑
𝑗=1

𝜆 𝑗 [0 − 𝑔 𝑗 (𝑥1, 𝑥2, . . . , 𝑥𝑚)] .
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1.1 Static Optimization Problem

Here, the bordered Hessian determinant is:���������������������

0 0 · · · 0 𝑔1
𝑥1 𝑔1

𝑥2 · · · 𝑔1
𝑥𝑚

0 0 · · · 0 𝑔2
𝑥1 𝑔2

𝑥2 · · · 𝑔2
𝑥𝑚

...
...

...
...

...
...

...
...

0 0 · · · 0 𝑔𝑛𝑥1 𝑔𝑛𝑥2 · · · 𝑔𝑛𝑥𝑚
𝑔1
𝑥1 𝑔2

𝑥1 · · · 𝑔𝑛𝑥1 L𝑜𝑥1𝑥1 L𝑜𝑥1𝑥2 · · · L𝑜𝑥1𝑥𝑚

𝑔1
𝑥2 𝑔2

𝑥2 · · · 𝑔𝑛𝑥2 L𝑜𝑥2𝑥1 L𝑜𝑥2𝑥2 · · · L𝑜𝑥2𝑥𝑚
...

...
...

...
...

...
...

...

𝑔1
𝑥𝑚 𝑔2

𝑥𝑚 · · · 𝑔𝑛𝑥𝑚 L𝑜𝑥𝑚𝑥1 L𝑜𝑥𝑚𝑥2 · · · L𝑜𝑥𝑚𝑥𝑚

���������������������
After observation, it is not difficult to find that:

(1) The bordered Hessian matrix of multi-variable optimization with multiple equality constraints is symmetric along
the main diagonal;

(2) Because multiple equality constraints increase the dimension of the border of the Hessian determinant, judging
whether it is positive definite, negative definite, or judging whether the function has a maximum, minimum is the same as
the case of a single equality constraint with multiple variables. If the leading principle minors, starting from the second-
order, of the Hessian determinant are all negative, the bordered Hessian matrix is positive definete, and the function has a
minimum; If the odd-order leading principle minors of the Hessian determinant are all positive and the even-order leading
principle minors of the Hessian determinant are all negative, the bordered Hessian matrix is negative definete, and the
function has a maximum.

1.1.2.2 Inquality Constraints Between Choice Variables

In the optimization problem of 𝑚 choice variable with 𝑛 equality constraints, we have pointed out that in order to
make the constraints effectively constraint the choice variables, 𝑛 < 𝑚 should be hold. Taking𝑚 = 2, 𝑛 = 1 as an example,
the equality constraints and inequality constraints are:

max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) = 0.


vs.⇐==⇒


max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) ≤ 0.


identical⇐====⇒


max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) + 𝑧 = 0,

𝑧 ≥ 0.

The inequality constraint 𝑔(𝑥, 𝑦) ≤ 0 can be transformed into an equality constraint by applying a non-negative
parameter 𝑧. If it is not interfered by 𝑧 ≥ 0, it can be solved by the Lagrange multiplier method discussed in the optimization
problem of equality constraints, that is, the first-order necessary condition is:

L = 𝑓 (𝑥, 𝑦) + 𝜆[0 − 𝑧 − 𝑔(𝑥, 𝑦)] ⇒



𝜕L
𝜕𝑥 = 0,
𝜕L
𝜕𝑦 = 0,
𝜕L
𝜕𝑧 = 0,
𝜕L
𝜕𝜆 = 0.

But now that the inequality constraint 𝑧 ≥ 0 has been added, the first-order condition for 𝑧 should change.

How to change?

Taking the maximization problem as an example, let’s assume an objective function that only contains non-negative
parameters 𝑧:

max
𝑧
O = 𝑓 (𝑧),

s.t. 𝑧 ≥ 0.
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1.1 Static Optimization Problem

If there is not a non-negative constraint, 𝑓 (·) should be a concave or quasi-concave function, in which case the
maximum value should be located in the first quadrant of the O-𝑧 two-dimensional coordinate system or in the vertical
direction. However, convex or quasi-convex functions may still obtain the maximum value on the ordinate axis under this
non-negative constraint. This can be summarized by the following mathematical expression:

when 𝑧 > 0, 𝑓 ′ (𝑧) = 0;

when 𝑧 = 0, 𝑓 ′ (𝑧) = 0;

when 𝑧 = 0, 𝑓 ′ (𝑧) < 0.

 ⇔ 𝑧 ≥ 0︸︷︷︸
non-negative

, 𝑓 ′ (𝑧) ≤ 0︸     ︷︷     ︸
F.O.C.

, and 𝑧 𝑓 ′ (𝑧) = 0︸      ︷︷      ︸
complementary slackness

.

Back to the optimization problem of 2 choice variables with 1 equality constraint and a non-negative constraint:
max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) + 𝑧 = 0,

𝑧 ≥ 0.


identical⇐====⇒


max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) ≤ 0.

Construct Lagrangian functions for optimization problems with and without auxiliary parameters 𝑧:
max←−−→
min

L ≡ 𝑓 (𝑥, 𝑦) + 𝜆[0 − 𝑧 − 𝑔(𝑥, 𝑦)], vs. max←−−→
min
L ≡ 𝑓 (𝑥, 𝑦) + 𝜆[0 − 𝑔(𝑥, 𝑦)],

s.t. 𝑧 ≥ 0.

The conditions for obtaining extreme values   are (the left and right ends are completely equivalent):
F.O.C. of L when 𝑧 is nonnegative︷                                         ︸︸                                         ︷

𝜕L

𝜕𝑥
= 0,

𝜕L

𝜕𝑦
= 0,

𝑧 ≥ 0,
𝜕L

𝜕𝑧
≤ 0, 𝑧

𝜕L

𝜕𝑧
= 0,

𝜕L

𝜕𝜆
= 0.


⇔



𝜕L

𝜕𝑥
= 0,

𝜕L

𝜕𝑦
= 0,

𝑧 ≥ 0,
𝜕L

𝜕𝑧
= −𝜆 ≤ 0, 𝑧 (−𝜆) = 0,

𝜕L

𝜕𝜆
= 0 − 𝑧 − 𝑔 (𝑥, 𝑦) = 0.


⇔



𝜕L
𝜕𝑥

= 0,

𝜕L
𝜕𝑦

= 0,

𝑧 ≥ 0, 𝜆 ≥ 0, 𝑧𝜆 = 0,

𝑧 = 0 − 𝑔 (𝑥, 𝑦) .

} ⇔



𝜕L
𝜕𝑥

= 0 = 𝜕L
𝜕𝑥

,

𝜕L
𝜕𝑦

= 0 = 𝜕L
𝜕𝑥

,

0 − 𝑔 (𝑥, 𝑦) ≥ 0, 𝜆 ≥ 0, [0 − 𝑔 (𝑥, 𝑦) ]𝜆 = 0,︷      ︸︸      ︷
HHH
𝜕L

𝜕𝜆
= 0 vs.

𝜕L
𝜕𝜆

= 0 − 𝑔 (𝑥, 𝑦)



vs.⇐==⇒

F.O.C. of L without constraint︷                                     ︸︸                                     ︷

𝜕L
𝜕𝑥

= 0,

𝜕L
𝜕𝑦

= 0,

𝜕L
𝜕𝜆
≥ 0, 𝜆 ≥ 0, 𝜆

𝜕L
𝜕𝜆

= 0.

︸                                                                                                                                                                                                                                                                                                              ︷︷                                                                                                                                                                                                                                                                                                              ︸
the left and right ends are equivalent

For the two Lagrangian functions mentioned above, the results of the first-order partial derivatives are exactly the same
for the unconstrained selection variables 𝑥 and 𝑦. The third row on the left is the first-order condition for the optimization
of function L (𝑧) = 𝑓 (𝑥, 𝑦) + 𝜆[0 − 𝑧 − 𝑔(𝑥, 𝑦)] with respect to the non-negative constraint 𝑧 Combining this condition
with the equality constraint condition converted from the inequality, we can obtain the complementary slackness condition
on the Lagrange multiplier 𝜆 on the third row on the right.

In the above optimization problem, if the two choice variables are also required to be non-negative, that is
max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) + 𝑧 = 0,

𝑥, 𝑦, 𝑧 ≥ 0.


identical⇐====⇒


max←−−→
min
O = 𝑓 (𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) ≤ 0,

𝑥, 𝑦 ≥ 0.

Construct Lagrangian functions for optimization problems with and without auxiliary parameters 𝑧 :
max←−−→
min

L ≡ 𝑓 (𝑥, 𝑦) + 𝜆[0 − 𝑧 − 𝑔(𝑥, 𝑦)], vs. max←−−→
min
L ≡ 𝑓 (𝑥, 𝑦) + 𝜆[0 − 𝑔(𝑥, 𝑦)],

s.t. 𝑥, 𝑦, 𝑧 ≥ 0. s.t. 𝑥, 𝑦 ≥ 0.

Therefore, the conditions an optimization problem where the variables are non-negative and there is an inequality
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constraint are:
𝑥 ≥ 0,

𝜕L

𝜕𝑥
≤ 0, 𝑥

𝜕L

𝜕𝑥
= 0,

𝑦 ≥ 0,
𝜕L

𝜕𝑦
≤ 0, 𝑦

𝜕L

𝜕𝑦
= 0,

𝑧 ≥ 0,
𝜕L

𝜕𝑧
≤ 0, 𝑧

𝜕L

𝜕𝑧
= 0,

𝜕L

𝜕𝜆
= 0.


vs.⇐==⇒



𝑥 ≥ 0,
𝜕L
𝜕𝑥
≤ 0, 𝑥

𝜕L
𝜕𝑥

= 0,

𝑦 ≥ 0,
𝜕L
𝜕𝑦
≤ 0, 𝑦

𝜕L
𝜕𝑦

= 0,

𝜆 ≥ 0,
𝜕L
𝜕𝜆
≥ 0, 𝜆

𝜕L
𝜕𝜆

= 0.

This is the Kuhn-Tucker condition similar to the first-order condition obtained in the nonlinear programming method
for optimization problems with nonnegative and inequality constraints. The application analysis of inequality constraints
in economics involves a considerable amount of trial and error, and the next edition may include additional discussions
based on specific cases from cutting-edge papers.

Previously, unconstrained optimality and equality-constrained optimality were applied to the market environments
of perfect competition and monopolistic competition respectively, which seemed to be separated from each other. How-
ever, in specific applications, the markets of perfect competition and monopolistic competition (or multiple monopolistic
competitions) should be considered comprehensively. The following three examples are static examples of modern macroe-
conomics laying the foundation for microeconomics. They are appopriate to demonstrate the comprehensive application
of static optimization.

Example 11-1. The market for final product sales is of perfect competition, while the market for intermediate
product sellers is of monopolistic competition.

i) The optimization problem of the final product production department under perfect competition in the product
buying and selling market.

The final product is indifferent, and the analytical framework for the representative production department to make a
desired decision is:

max
𝑄𝑖𝑑⇄𝑄𝑠

Π ≡

revenueR[𝑄𝑠 (𝑄𝑖𝑑 ) ]︷                     ︸︸                     ︷
𝑃

(ˆ 1

0
𝑄

𝜖𝑚−1
𝜖𝑚

𝑖𝑑 d𝑖
) 𝜖𝑚

𝜖𝑚−1

︸                   ︷︷                   ︸
𝑄𝑠

−

cost C[𝑄𝑠 (𝑄𝑖𝑑 ) ]︷         ︸︸         ︷ˆ 1

0
𝑃𝑖𝑄𝑖𝑑d𝑖

vs.⇐======⇒
Example2

marginal revenue=marginal cost︷                                 ︸︸                                 ︷
max
𝐿𝑑⇄𝑄𝑠

Π ≡

revenue︷︸︸︷
𝑃𝑄𝑠 −

variable cost︷︸︸︷
𝑊𝐿𝑑︸                                 ︷︷                                 ︸

real wage=marginal product

.

The choice of intermediate input factors 𝑄𝑖𝑑 is to choose the final product supply 𝑄𝑠 to maximize profits, where the
final product is the Dixit-Stiglitz CES sum of the intermediate products and 𝜖𝑚 is the elasticity of substitution between the
intermediate input basket.

The first-order necessary condition is:

dΠ
d𝑄𝑖𝑑

= 0 = 𝑃
𝜖𝑚

𝜖𝑚 − 1

(ˆ 1

0
𝑄

𝜖𝑚−1
𝜖𝑚

𝑖𝑑 d𝑖
) 𝜖𝑚

𝜖𝑚−1 −1
𝜖𝑚 − 1
𝜖𝑚

𝑄
𝜖𝑚−1
𝜖𝑚
−1

𝑖𝑑 − 𝑃𝑖 ,

⇒ 𝑃𝑖 = 𝑃

(ˆ 1

0
𝑄

𝜖𝑚−1
𝜖𝑚

𝑖𝑑 d𝑖
) 𝜖𝑚

𝜖𝑚−1 −1

𝑄
𝜖𝑚−1
𝜖𝑚
−1

𝑖𝑑 ,

⇒ 𝑃𝑖 = 𝑃

[(ˆ 1

0
𝑄

𝜖𝑚−1
𝜖𝑚

𝑖𝑑 d𝑖
) 𝜖𝑚

𝜖𝑚−1
] 1

𝜖𝑚

𝑄
−1
𝜖𝑚

𝑖𝑑 ,

⇒ 𝑃𝑖
𝑃

=

(
𝑄𝑖𝑑
𝑄𝑠

) −1
𝜖𝑚

,

⇒ 𝑄𝑖𝑑 =

(
𝑃𝑖
𝑃

)−𝜖𝑚
𝑄𝑠 .

In this way, we can get the demand curve for intermediate product 𝑖 in a perfectly competitive market environment.
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Substituting it into the objective function, we can get the functional relationship between the total price level and the price
of a single intermediate product 𝑖:

𝑃𝑄𝑠 −
ˆ 1

0
𝑃𝑖𝑄𝑖𝑑d𝑖 =

perfect
competition︷︸︸︷
Π = 0 ,

⇒
ˆ 1

0
𝑃𝑖𝑄𝑖𝑑d𝑖 = 𝑃𝑄𝑠 ,

⇒
ˆ 1

0
𝑃𝑖

[(
𝑃𝑖
𝑃

)−𝜖𝑚
𝑄𝑠

]
d𝑖 = 𝑃𝑄,

⇒
ˆ 1

0
𝑃𝑖

(
𝑃𝑖
𝑃

)−𝜖𝑚
d𝑖 = 𝑃,

⇒ 𝑃 =

(ˆ 1

0
𝑃1−𝜖𝑚
𝑖 d𝑖

) 1
1−𝜖𝑚

.

It is not difficult to find that the required consumer demand curve and total price level index are consistent with
Example 9.

ii) Optimization problem of the intermediate product production department under monopolistic competition

The intermediate products are different. The basis for the heterogeneous intermediate product manufacturers 𝑖 to
make a desired decision is:

max
𝑃𝑖

Π𝑖 ≡ 𝑃𝑖𝑄𝑖𝑑 −𝑊𝐿𝑖𝑑 ,

s.t. 𝑄𝑖𝑑 =

(
𝑃𝑖
𝑃

)−𝜖𝑚
𝑄𝑠 ,

𝑄𝑖𝑠 = 𝐴𝐿𝑖𝑑 ,

𝑄𝑖𝑑 = 𝑄𝑖𝑠 = 𝑄𝑖 .

The simplified production function (capital input factor is exogenous and labor output share is 1) will be described in
detail in Chapter 3. Substituting the constraints and equilibrium conditions into the objective function, we can transform
the optimization problem about the demand for product 𝑖 into an unconstrained optimization problem:

max
𝑄𝑖𝑑

Π𝑖 ≡
(
𝑃𝑖 −

𝑊

𝐴

)
𝑄𝑖𝑑

min
𝐿𝑖𝑑

𝑀 𝑖 = 𝑊𝐿𝑖𝑑

s.t. 𝐴𝐿𝑖𝑑 ≥ 𝑄𝑖𝑠
⇒ min

𝐿𝑖𝑑
L≡𝑊𝐿𝑖𝑑+MC(𝑄𝑖𝑠−𝐴𝐿𝑖𝑑 )

⇐===================================================⇒
or min

𝑄𝑖𝑠

C𝑖 = 𝑊𝐿𝑖𝑑

s.t. 𝑄𝑖𝑠 = 𝐴𝐿𝑖𝑑
⇒ MC𝑖≡ dC𝑖

d𝑄𝑖𝑠
=

d
(
𝑊

𝑄𝑖𝑠
𝐴

)
d𝑄𝑖𝑠

=𝑊
𝐴 ≡MC

max
𝑄𝑖𝑑

Π𝑖 ≡ (𝑃𝑖 −MC)𝑄𝑖𝑑 .

Then, the optimal price decision for product 𝑖 is obtained through the inverse demand function 𝑃𝑖 =
(
𝑄𝑖𝑑

𝑄𝑠

)− 1
𝜖𝑚
𝑃.

Or it can be directly transformed into the optimal price decision problem for product 𝑖:

max
𝑃𝑖

Π𝑖 ≡
(
𝑃𝑖 −

𝑊

𝐴

) [(
𝑃𝑖
𝑃

)−𝜖𝑚
𝑄𝑠

]
or⇐==⇒ max

𝑃𝑖
Π𝑖 ≡ (𝑃𝑖 −MC)

[(
𝑃𝑖
𝑃

)−𝜖𝑚
𝑄𝑠

]
.

It is not difficult to find that this is a reappearance of Example 3, and the demand curve directly given in Example 3
comes from Example Example 9. This example presents the close connection between Example 9 and Example 3 from a
different perspective. Therefore, the solution is still marginal cost (a homogeneous production function makes the marginal
cost of heterogeneous enterprises the same) with a cost markup to reflect the optimal pricing decision under monopolistic
competition.

iii) The optimization problem of the household sector under perfect competition in the labor market

The decision analysis framework for the representative household sector not having monopoly power in both the final
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product buyer’s market and the labor seller’s market is:

max
𝐶,𝐿𝑠

𝑈 ≡ 𝑈 (𝐶, 𝐿𝑠),

s.t.
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖︸       ︷︷       ︸
𝑃𝐶

=
ˆ 1

0
𝑊 𝑖𝐿𝑖𝑠d𝑖︸         ︷︷         ︸
𝑊𝐿𝑠

+
ˆ 1

0
Π𝑖d𝑖︸    ︷︷    ︸
Π̄𝑖

.

Note that the profit (sum) of the intermediate product manufacturer under monopolistic competition is Π̄𝑖 ≠ 0, while
the profit (sum) of the final product manufacturer under perfect competition is Π = 0. This comes back to Example 8,
except that the household’s expected total price level is simplified to the instantaneous total price level and the profit and
dividend income of the household as a shareholder of the enterprise is omitted. The solution is still the desired consumption
demand and the optimal labor supply.

Based on the same market environment, the final product production sector and the household sector are both assumed
to be representative, so the household sector’s demand for product 𝑖 in a basket of consumer goods corresponds exactly to
the final product sector’s demand for product 𝑖 in a basket of intermediate goods when the market is cleared, which is what is
solved in Example 9. It can be seen that the hierarchical structure of the trinity of representative households, representative
final product manufacturers, and heterogeneous intermediate product manufacturers has exactly the same modeling results
as the hierarchical structure of the integration of representative households and heterogeneous manufacturers.

Therefore, we might as well return to the two-sector structure of households and firms, but in addition to considering
that firms produce heterogeneous products, we can also consider that households have heterogeneous labor.

Example 11-2. Monopolistic competition exists in both the product seller market and the labor seller market.

This type of model comes from [11]�and is explained in the famous works [13, ch.6] and [50, ch.7, pp.277-316], but
all of them take into account both monopolistic competition and nominal rigidity to form a dynamic form.

i) Optimization Problems of Production Departments under Monopolistic Competition in Product Seller Market

The decision-making behavior of manufacturer 𝑖 is divided into two steps.

The first step is to maximize a basket of labor demand given labor expenditure, or minimize labor expenditure given
a basket of labor demand, which is back to a question similar to Example 9:

min
𝐿𝑖𝑙𝑑

ˆ 1

0
𝑊 𝑙𝐿𝑖𝑙𝑑d𝑙 ≡ 𝑀 𝑖︸︷︷︸

given labor expenditure

,

s.t.
(ˆ 1

0
𝐿

𝜖ℎ−1
𝜖ℎ

𝑖𝑙𝑑 d𝑙
) 𝜖ℎ

𝜖ℎ−1

≥

a basket of labor︷             ︸︸             ︷
𝐿𝑖𝑑 = 𝐿𝑖𝑠 = 𝐿𝑖 .


⇒


𝐿𝑖𝑙𝑑 =

(
𝑊 𝑙

𝑊

)−𝜖ℎ
𝐿𝑖 ,

𝑊 =

(ˆ 1

0
𝑊1−𝜖ℎ
𝑙 d𝑙

) 1
1−𝜖ℎ

.


⇐ 𝑊𝐿𝑖 =

ˆ 1

0
𝑊𝑙𝐿𝑖𝑙𝑑d𝑙.

The production of firm 𝑖 requires a basket of heterogeneous labor purchased from the representative household sector.
Given the technical level, and assuming that the production share of labor is 1, the product 𝑖 is the CES aggregate of

heterogeneous labor, that is, 𝑄𝑖𝑠 = 𝐴𝑖𝐿𝑖𝑑 = 𝐴𝑖

(´ 1
0 𝐿

𝜖ℎ−1
𝜖ℎ

𝑖𝑙𝑑 d𝑙
) 𝜖ℎ

𝜖ℎ−1

. Since the technical level of firm 𝑖 is now more diverse,

the marginal cost will also be different.

In the second step, given that its labor demand is determined by supply, the basis for heterogeneous firms 𝑖 to make a
desired decision is:

max
𝑃𝑖

Π𝑖 ≡ (𝑃𝑖 −MC𝑖)𝑄𝑖𝑑 ,

s.t. 𝑄𝑖𝑑 =

(
𝑃𝑖
𝑃

)−𝜖𝑚
𝑄.

The demand curve for product 𝑖 results from minimizing consumption expenditure given a basket of heterogeneous
consumer goods (combined with product market equilibrium conditions), which will be reviewed later when we introduce
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the decision-making behavior of the household sector.

The optimal price for manufacturer 𝑖 is still:

𝑃◦𝑖 =
𝜖𝑚

𝜖𝑚 − 1
MC𝑖 .

Determine the marginal cost of firm 𝑖 by minimizing the cost:

min
𝐿𝑖𝑙𝑑

𝑀 𝑖 ≡

cost of labor input︷          ︸︸          ︷ˆ 1

0
𝑊 𝑙𝐿𝑖𝑙𝑑d𝑙,

s.t. 𝐴𝑖

(ˆ 1

0
𝐿

𝜖ℎ−1
𝜖ℎ

𝑖𝑙𝑑 d𝑙
) 𝜖ℎ

𝜖ℎ−1

︸                     ︷︷                     ︸
effective labor input

≥ 𝑄𝑖𝑠 .
⇔

min
𝐿𝑖𝑠

𝑀 𝑖 ≡

cost of labor input︷︸︸︷
𝑊𝐿𝑖𝑑 ,

s.t. 𝐴𝑖𝐿𝑖𝑑︸︷︷︸
effective labor input

≥ 𝑄𝑖𝑠 .

The Lagrange multiplier is the marginal cost:

L ≡ 𝑊𝐿𝑖𝑑 +MC𝑖 (𝑄𝑖𝑠 − 𝐴𝑖𝐿𝑖𝑑).

The optimal price for firm 𝑖 is then:

𝑃◦𝑖︸︷︷︸
nominal

price

=

︷  ︸︸  ︷
𝜖𝑚

𝜖𝑚 − 1︸  ︷︷  ︸
markup

︷︸︸︷
𝑊

𝐴𝑖︸︷︷︸
nominal
𝑀𝐶

,

⇒

real
price︷︸︸︷
𝑃◦𝑖
𝑃︸︷︷︸

realtive price

=

markup︷  ︸︸  ︷
𝜖𝑚

𝜖𝑚 − 1

real
𝑀𝐶︷︸︸︷
𝑊/𝑃
𝐴𝑖︸          ︷︷          ︸

monoplistic competition

vs.
𝑊

𝑃
= 𝐹𝑜𝐿︸    ︷︷    ︸

perfect competition

.

If the technology level is 𝐴𝑖 = 𝐴, then the marginal cost is MC𝑖 = MC�

ii) The optimization problem of the household sector under monopolistic competition in the labor seller market

The decision-making behavior of a representative household with heterogeneous labor force consists of two steps.

The first step is to maximize a basket of consumer goods given consumer expenditure, or minimize consumer expen-
diture given a basket of consumer goods, that is, return to Example 9�

min
𝐶𝑖

ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖 ≡ 𝑀,

s.t.
(ˆ 1

0
𝐶

𝜖𝑚−1
𝜖𝑚

𝑖 d𝑖
) 𝜖𝑚

𝜖𝑚−1

≥ 𝐶.


⇒


𝐶𝑖 =

(
𝑃𝑖
𝑃

)−𝜖𝑚
𝐶,

𝑃 =

(ˆ 1

0
𝑃1−𝜖𝑚
𝑖 d𝑖

) 1
1−𝜖𝑚

.


⇐ 𝑃𝐶 =

ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖.

In the second step, the household chooses wages to determine the supply of heterogeneous labor 𝑙, and then chooses
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the total consumption and total labor supply based on utility maximization:

max
𝐶,𝑊𝑙

𝑈 ≡ 𝑈

©­­­­­­«
𝐶,

aggregate supply︷     ︸︸     ︷ˆ 1

0
𝐿𝑙𝑠d𝑙︸         ︷︷         ︸

the labor able to offer

ª®®®®®®¬
,

s.t.
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖︸       ︷︷       ︸
=𝑃𝐶

=
ˆ 1

0
𝑊𝑙𝐿𝑙𝑠d𝑙︸        ︷︷        ︸

=
´ 1

0 𝑊𝐿𝑖d𝑖

+
ˆ 1

0
Π𝑖d𝑖︸    ︷︷    ︸
Π̄𝑖

,

𝐿𝑙𝑠 = 𝐿𝑙𝑑 =

(
𝑊𝑙
𝑊

)−𝜖ℎ ˆ 1

0
𝐿𝑖d𝑖.

identital⇐==========⇒
𝑑 determines 𝑠

max
𝐶,𝑊𝑙

𝑈 ≡ 𝑈

©­­­­­­«
𝐶,

aggregate demand︷              ︸︸              ︷ˆ 1

0

ˆ 1

0
𝐿𝑖𝑙𝑑d𝑙d𝑖︸              ︷︷              ︸

the labor willing to offer

ª®®®®®®¬
,

s.t.
ˆ 1

0
𝑃𝑖𝐶𝑖d𝑖︸       ︷︷       ︸
=𝑃𝐶

=
ˆ 1

0

ˆ 1

0
𝑊𝑙𝐿𝑖𝑙𝑑d𝑙d𝑖︸                  ︷︷                  ︸

=
´ 1

0 𝑊𝐿𝑖d𝑖

+
ˆ 1

0
Π𝑖d𝑖︸    ︷︷    ︸
Π̄𝑖

,

ˆ 1

0

ˆ 1

0
𝐿𝑖𝑙𝑑d𝑙d𝑖 =

(
𝑊𝑙
𝑊

)−𝜖ℎ ˆ 1

0
𝐿𝑖d𝑖.

The choice variable 𝐶 can be solved from the constraint and substituted into the objective function together with the
labor demand curve to transform it into an unconstrained optimization problem:

max
𝑊𝑙

𝑈 ≡ 𝑈
[

1
𝑃

(ˆ 1

0

ˆ 1

0
𝑊 𝑙𝐿𝑖𝑙𝑑d𝑙d𝑖 +

ˆ 1

0
Π𝑖d𝑖

)
,

ˆ 1

0

ˆ 1

0
𝐿𝑖𝑙𝑑d𝑙d𝑖

]
,

= 𝑈

{
1
𝑃

[
𝑊 𝑙

(
𝑊𝑙
𝑊

)−𝜖ℎ ˆ 1

0
𝐿𝑖d𝑖 +

ˆ 1

0
Π𝑖d𝑖

]
,

(
𝑊𝑙
𝑊

)−𝜖ℎ ˆ 1

0
𝐿𝑖d𝑖

}
,

= 𝑈


1
𝑃

[
𝑊 𝑙

(
𝑊𝑙
𝑊

)−𝜖ℎ
𝐿̄𝑖 + Π̄𝑖

]
︸                           ︷︷                           ︸

𝐶

,

(
𝑊𝑙
𝑊

)−𝜖ℎ
𝐿̄𝑖︸        ︷︷        ︸

{𝐿𝑙𝑠 }


.

F.O.C.
=====⇒ 0 =

d𝑈
d𝑊𝑙

= (1 − 𝜖ℎ)𝑈𝐶
1
𝑃

(
𝑊𝑙
𝑊

)−𝜖ℎ
𝐿̄𝑖 − 𝜖ℎ𝑈𝐿

(
𝑊𝑙
𝑊

)−𝜖ℎ
𝐿̄𝑖𝑊

−1
𝑙 ,

⇒

real wage︷     ︸︸     ︷
𝑊◦𝑙
𝑃︸︷︷︸

realtive wage

=

markup︷ ︸︸ ︷
𝜖ℎ

𝜖ℎ − 1

MRS︷  ︸︸  ︷(
−𝑈𝐿
𝑈𝐶

)
︸            ︷︷            ︸

monopolistic competition

vs.
𝑊 𝑙

𝑃
=

𝑊

𝑃
=
−𝑈𝑜𝐿
𝑈𝑜𝐶︸       ︷︷       ︸

perfect competition

.

The focus of this example is to show how to obtain the optimal decision on prices and wages in an environment where
both the product market and the labor market have monopolistic competitition.

The next example is still based on the trinity hierarchy and makes a similar setting. The household sector’s labor
market is still perfectly competitive, but in addition to the intermediate product production sector, the final product pro-
duction sector is also in a monopolistic competition market environment. Considering that both the product market and the
labor market are monopolistic competition is similar to considering that both the final product and intermediate product
production stages are monopolistic competition.

Example 11-3. The final product seller market and the intermediate product seller market are both monopo-
listic competition.

This example is adapted from [17–19], and the specific application is expanded in [53, 54] The original papers are all
time series analysis, that is, they consider the dynamic decision-making caused by nominal rigidity or information friction.
As the first part of the advanced macroecnomics series, this book only considers the static decision-making problem of the
final product seller market and the intermediate product seller market in a monopolistic competition market environment.

i) Optimization problem of representative household sector under perfect competition in labor market
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1.1 Static Optimization Problem

The basis for the household sector to make desired decisions is:

max
𝐶,𝐿𝑠

𝑈 ≡ 𝑈 (𝐶, 𝐿𝑠),

s.t.
ˆ 1

0
𝑃 𝑗𝐶 𝑗d 𝑗︸        ︷︷        ︸
𝑃 𝑓𝐶

=

wage income from
intermediate good production︷        ︸︸        ︷ˆ 1

0
𝑊𝐿𝑖𝑠d𝑖 +

wage income from
final good production︷         ︸︸         ︷ˆ 1

0
𝑊𝐿 𝑗𝑠d 𝑗︸                                              ︷︷                                              ︸

𝑊𝐿𝑠

+

profit dividend from
intermediate good production︷    ︸︸    ︷ˆ 1

0
Π𝑖d𝑖 +

profit dividend from
final good production︷     ︸︸     ︷ˆ 1

0
Π 𝑗d 𝑗︸                                              ︷︷                                              ︸

Π

.

From this, we can obtain the desired consumption demand and optimal labor supply as usual, by combining the labor
supply curve and the budget constraint (depending on the specific utility function given):

𝑊

𝑃 𝑓
=
−𝑈𝐿𝑠 (𝐶, 𝐿𝑠)
𝑈𝐶 (𝐶, 𝐿𝑠)

,

𝑃 𝑓𝐶 = 𝑊𝐿𝑠 + Π.

The final goods sector is monopolistically competitive, and consumption demand for heterogeneous final goods 𝑗
comes from the household sector maximizing a basket of final goods given its expenditure or minimizing its expenditure
given a basket of final goods:

max
𝐶 𝑗

Dixit-Stiglitz aggregated CES functyion︷                        ︸︸                        ︷
𝐶 ≡

(ˆ 1

0
𝐶

𝜖 𝑓 −1
𝜖 𝑓

𝑗 d𝑖

) 𝜖 𝑓
𝜖 𝑓 −1

,
vs.⇐==⇒ min

𝐶 𝑗

𝑄 𝑓 =𝑄 𝑓 𝑑=𝑄 𝑓 𝑠=𝐶+XXXX𝐼+𝐺+𝛿𝐾︷                    ︸︸                    ︷
𝑃 𝑓𝑄 𝑓 ≡ 𝑀 𝑓 ≡ 𝑃 𝑓𝐶 =

´ 1
0 𝑃 𝑗𝐶 𝑗d 𝑗 ,

s.t.
´ 1

0 𝑃 𝑗𝐶 𝑗d 𝑗 ≤ 𝑃 𝑓𝑄 𝑓 ≡ 𝑀 𝑓 . s.t.

(´ 1
0 𝐶

𝜖 𝑓 −1
𝜖 𝑓

𝑗 d 𝑗

) 𝜖 𝑓
𝜖 𝑓 −1

≥ 𝐶.

From this, we can get the demand curve of heterogeneous final product 𝑗 and the total price index of final product:

𝐶 𝑗 =

(
𝑃 𝑗

𝑃 𝑓

)−𝜖 𝑓
𝐶

𝑃 𝑓 =

(´ 1
0 𝑃

1−𝜖 𝑓
𝑗 d 𝑗

) 1
1−𝜖 𝑓

⇐==================⇒
𝐶 𝑗=𝑄 𝑗𝑑 ; 𝐶=𝑄 𝑓

𝑄 𝑗𝑑 =

(
𝑃 𝑗

𝑃 𝑓

)−𝜖 𝑓
𝑄 𝑓 .

ii) Optimization problem of final product production department under monopolistic competition in product seller
market

The final products are different, and the analytical framework for heterogeneous final product manufacturers 𝑗 to make
ideal decisions is:

max
𝑃𝑗

Π 𝑗 ≡
(
𝑃 𝑗 −MC 𝑗

) household
demand for 𝑗︷︸︸︷
𝑄 𝑗𝑑 ,

s.t. 𝑄 𝑗𝑑 =

(
𝑃 𝑗

𝑃 𝑓

)−𝜖 𝑓
𝑄 𝑓 ,

𝑄 𝑗𝑠 = 𝑄
𝛼
𝑚𝑑 [𝐴 𝑗𝐿 𝑗𝑑]

1−𝛼,

𝑄𝑚𝑠 =

(ˆ 1

0
𝑄

𝜖𝑚−1
𝜖𝑚

𝑗𝑖𝑠 d𝑖
) 𝜖𝑚

𝜖𝑚−1

,

𝑄 𝑗𝑖𝑑 =

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚
𝑄𝑚,

𝑄 𝑗𝑖𝑑 = 𝑄 𝑗𝑖𝑠 , 𝑄𝑚𝑑 = 𝑄𝑚𝑠 = 𝑄𝑚︸                 ︷︷                 ︸
market clearing of intermediate goods

,

𝑄 𝑗𝑑 = 𝑄 𝑗𝑠 ,

market clearing of final goods︷                ︸︸                ︷
𝑄 𝑓 𝑑 = 𝑄 𝑓 𝑠 = 𝑄 𝑓 .
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1.1 Static Optimization Problem

Given the marginal cost, without considering the supply side, the optimal decision is simplified to:

max
𝑃𝑗⇄𝑄 𝑗𝑑

Π 𝑗 ≡
[(
𝑄 𝑗𝑑

𝑄 𝑓

)− 1
𝜖 𝑓

𝑃 𝑓 −MC 𝑗

]
𝑄 𝑗𝑑 .

This is the method 1 introduced in Example 3. Following similar steps, we first solve the demand of the household
sector for heterogeneous final products, and then using the inverse demand, we can know that the optimal pricing of the
final product production department 𝑗 is:

𝑃◦𝑗︸︷︷︸
nominal price

=

︷ ︸︸ ︷
𝜖 𝑓

𝜖 𝑓 − 1︸ ︷︷ ︸
cost markup

· MC 𝑗︸︷︷︸
nominal

marginal cost

.

Next, we need to determine the marginal cost of final product manufacturer 𝑗 by cost minimization:

min
𝑄 𝑗𝑖𝑑 ,𝐿 𝑗𝑑

𝑀 𝑗 ≡

total expenditure︷                            ︸︸                            ︷ˆ 1

0
𝑃𝑖𝑄 𝑗𝑖𝑑d𝑖︸          ︷︷          ︸

expenditure of
intermidiate goods

+ 𝑊𝐿 𝑗𝑑︸︷︷︸
expenditure of

labor input

,

s.t.

[(ˆ 1

0
𝑄

𝜖𝑚−1
𝜖𝑚

𝑗𝑖𝑑 d𝑖
) 𝜖𝑚

𝜖𝑚−1
] 𝛼

︸                        ︷︷                        ︸
a basket of

intermidiate goods input

(𝐴 𝑗𝐿 𝑗𝑑)1−𝛼︸         ︷︷         ︸
effective labor input

≥ 𝑄 𝑗𝑠 .

equivelant
⇐======⇒

min
𝑄𝑚𝑑 ,𝐿 𝑗𝑑

𝑀 𝑗 ≡

total expenditure︷                            ︸︸                            ︷
𝑃𝑚𝑄𝑚𝑑︸   ︷︷   ︸

expenditure of
intermidiate goods

+ 𝑊𝐿 𝑗𝑑︸︷︷︸
expenditure of

labor input

,

s.t. 𝑄𝛼𝑚𝑑︸︷︷︸
a basket of

intermidiate goods input

(𝐴 𝑗𝐿 𝑗𝑑)1−𝛼︸         ︷︷         ︸
effective labor input

≥ 𝑄 𝑗𝑠 .

The Lagrange multiplier is the marginal cost:

L 𝑗 ≡ (𝑃𝑚𝑄𝑚𝑑 +𝑊𝐿 𝑗𝑑) +MC 𝑗

[
𝑄 𝑗𝑠 −𝑄𝛼𝑚𝑑 (𝐴 𝑗𝐿 𝑗𝑑)

1−𝛼] .
The first order condition of the intermidiate good demand is:

𝜕L 𝑗
𝜕𝑄𝑚𝑑

= 0,

⇒ 𝑃𝑚︸︷︷︸
intermidiate good price index

= 𝛼MC 𝑗𝑄
𝛼−1
𝑚𝑑 (𝐴 𝑗𝐿 𝑗𝑑)

1−𝛼,

= 𝛼MC 𝑗 𝑄
𝛼
𝑚𝑑 (𝐴 𝑗𝐿 𝑗𝑑)

1−𝛼︸                ︷︷                ︸𝑄−1
𝑚𝑑 ,

= 𝛼MC 𝑗

︷︸︸︷
𝑄 𝑗𝑠 𝑄

−1
𝑚𝑑 ,

⇒

a basket of intermidiate goods
used for the final good 𝑗︷︸︸︷

𝑄𝑚𝑑 = 𝛼
MC 𝑗

𝑃𝑚
𝑄 𝑗𝑠 ,

⇒ 𝑄 𝑗𝑖𝑑

(
𝑃𝑖
𝑃𝑚

) 𝜖𝑚
= 𝛼

MC 𝑗

𝑃𝑚
𝑄 𝑗𝑠 ,

⇒ 𝑄 𝑗𝑖𝑑︸︷︷︸
manufacturer 𝑗’s demand

of intermidiate good 𝑖

= 𝛼
MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚
𝑄 𝑗𝑠;

⇒

aggregate demand
of intermidiate good 𝑖︷︸︸︷

𝑄𝑖𝑑 ≡
ˆ 1

0
𝑄 𝑗𝑖𝑑d 𝑗 = 𝛼

MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚 ˆ 1

0
𝑄 𝑗𝑠d 𝑗 .
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1.1 Static Optimization Problem

The first-order condition for the demand for labor is:
𝜕L
𝜕𝐿 𝑗𝑑

= 0,

⇒ 𝑊 = (1 − 𝛼)MC 𝑗𝑄
𝛼
𝑚𝑑 (𝐴 𝑗𝐿 𝑗𝑑)

−𝛼𝐴 𝑗 ,

= (1 − 𝛼)MC 𝑗𝑄
𝛼
𝑚𝑑 (𝐴 𝑗𝐿 𝑗𝑑)

1−𝛼 1
𝐿 𝑗𝑑

,

= (1 − 𝛼)MC 𝑗
𝑄 𝑗𝑠

𝐿 𝑗𝑑
,

⇒ 𝐿 𝑗𝑑︸︷︷︸
manufacturer 𝑗’s

labor demand

= (1 − 𝛼)
MC 𝑗

𝑊
𝑄 𝑗𝑠 ,

⇒

aggregate
labor demand︷︸︸︷
𝐿̄ 𝑗𝑑 ≡

ˆ 1

0
𝐿 𝑗𝑑d 𝑗 = (1 − 𝛼)

MC 𝑗

𝑊

ˆ 1

0
𝑄 𝑗𝑠d 𝑗 .

Combining the two equations in the above derivation process to further establish the marginal cost:

𝑃𝑚 = 𝛼MC 𝑗𝑄 𝑗𝑠𝑄
−1
𝑚𝑑 ,

𝑊 = (1 − 𝛼)MC 𝑗
𝑄 𝑗𝑠

𝐿 𝑗𝑑
,

⇒ 𝑊

𝑃𝑚
=

1 − 𝛼
𝛼

𝑄𝑚𝑑
𝐿 𝑗𝑑

,

⇒ 𝑄𝑚𝑑
𝐿 𝑗𝑑

=
𝛼

1 − 𝛼
𝑊

𝑃𝑚
.

𝑃𝑚 = 𝛼MC 𝑗𝑄 𝑗𝑠𝑄
−1
𝑚𝑑 ,

⇒ MC 𝑗 =
1
𝛼

𝑃𝑚𝑄𝑚𝑑
𝑄 𝑗𝑠

,

=
1
𝛼

𝑃𝑚𝑄𝑚𝑑
𝑄𝛼𝑚𝑑 (𝐴 𝑗𝐿 𝑗𝑑)1−𝛼

,

=
1
𝛼

𝑃𝑚𝑄
1−𝛼
𝑚𝑑

(𝐴 𝑗𝐿 𝑗𝑑)1−𝛼
,

=
1
𝛼

𝑃𝑚

𝐴1−𝛼
𝑗

(
𝑄𝑚𝑑
𝐿 𝑗𝑑

)1−𝛼
,

=
1
𝛼

𝑃𝑚

𝐴1−𝛼
𝑗

(
𝛼

1 − 𝛼
𝑊

𝑃𝑚

)1−𝛼
,

= 𝛼−𝛼 (1 − 𝛼)𝛼−1𝑃𝛼𝑚

(
𝑊

𝐴 𝑗

)1−𝛼
,

𝛼̄≡ 1
𝛼𝛼 (1−𝛼)1−𝛼

=============⇒ MC 𝑗 = 𝛼̄𝑃
𝛼
𝑚

(
𝑊

𝐴 𝑗

)1−𝛼
.

The optimal price of final product production department 𝑗 is then

𝑃◦𝑗 =
𝜖 𝑓

𝜖 𝑓 − 1
𝛼̄𝑃𝛼𝑚

(
𝑊

𝐴 𝑗

)1−𝛼
.

iii) Optimization problem of intermediate product production department under monopolistic competition in product
seller market.

Intermediate products are different. The desired decision of heterogeneous intermediate product manufacturer 𝑖 is
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1.2 Dynamic Optimization Problem

based on:

max
𝑃𝑖

Π𝑖 ≡ (𝑃𝑖 − 𝑀𝐶𝑖)

aggregate demand
of intermedaite good 𝑖︷︸︸︷

𝑄𝑖𝑑 ,

s.t. 𝑄𝑖𝑑 = 𝛼
MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚 ˆ 1

0
𝑄 𝑗𝑠d 𝑗︸      ︷︷      ︸

aggregate supply
of the final good

,

aggregate supply
of intermedaite good 𝑖︷︸︸︷

𝑄𝑖𝑠 = 𝐴𝐿𝑖𝑑 ,

𝑄𝑖𝑑 = 𝑄𝑖𝑠 .

Given the marginal cost, MC𝑖 = 𝑊
𝐴𝑖

, without paying attention to supply, the equality-constrained optization is trans-
formed into the unconstrained optimization

max
𝑃𝑖

Π𝑖 ≡ (𝑃𝑖 − 𝑀𝐶𝑖)𝛼
MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚 ˆ 1

0
𝑄 𝑗𝑠d 𝑗 .

F.O.C.
=====⇒ 0 =

dΠ𝑖
d𝑃𝑖

= (1 − 𝜖𝑚)𝛼
MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚 ˆ 1

0
𝑄 𝑗𝑠d 𝑗 + 𝜖𝑚𝑀𝐶𝑖𝛼

MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚−1 1
𝑃𝑚

ˆ 1

0
𝑄 𝑗𝑠d 𝑗 ,

⇒ 0 = (𝜖𝑚 − 1)𝛼
MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚 ˆ 1

0
𝑄 𝑗𝑠d 𝑗 − 𝜖𝑚𝑀𝐶𝑖𝛼

MC 𝑗

𝑃𝑚

(
𝑃𝑖
𝑃𝑚

)−𝜖𝑚−1 1
𝑃𝑚

ˆ 1

0
𝑄 𝑗𝑠d 𝑗 ,

⇒ 𝑃𝑖 =
𝜖𝑚

𝜖𝑚 − 1
𝑀𝐶𝑖 =

𝜖𝑚
𝜖𝑚 − 1

𝑊

𝐴𝑖
.

In this way, we obtain the desired pricing equation for final product and intermediate product manufacturers both in
a monopolistic competition market environment.

The above three examples connect the production sector and the household sector at different production stages, but
they are still partial solutions. Combining the price index and the pricing equation, the aggregate supply curve or Phillips
curve can be further derived; combining the aggregate supply and aggregate demand curves, monetary policy analysis can
also be performed, which will be presented in the book [55]. In addition, if partial nominal rigidity is considered, the static
optimization problem will be transformed into a dynamic optimization problem.

1.2 Dynamic Optimization Problem

The salient feature of a dynamic model is that it describes the relationship between variables at different times. Intu-
itively, all variables in a dynamic model have a variable 𝑡 that represents time, but the reverse is not necessarily true. The
key point is that there is a cross-period relationship between variables.

First, it should be noted that dynamic models can be divided into discrete time models and continuous time models.

(1) Discrete-time dynamics refers to the change of variables in a certain period of time, so 𝑡 = 0, 1, 2, 3, . . ., for
example:

Savings growth rate: 𝑆𝑡+1 = (1 + 𝑟)𝑆𝑡 ⇔ 𝑆𝑡+1 − 𝑆𝑡 = 𝑟𝑆𝑡 ⇔ Δ𝑆𝑡/Δ𝑡
𝑆𝑡

= 𝑟,

Technology growth rate: 𝐴𝑡+1 = (1 + 𝑔𝑎)𝐴𝑡 ⇔ 𝐴𝑡+1 − 𝐴𝑡 = 𝑔𝑎𝐴𝑡 ⇔ Δ𝐴𝑡/Δ𝑡
𝐴𝑡

= 𝑔𝑎,

Labor growth rate: 𝐿𝑡+1 = (1 + 𝑔𝑙)𝐿𝑡 ⇔ 𝐿𝑡+1 − 𝐿𝑡 = 𝑔𝑙𝐿𝑡 ⇔ Δ𝐿𝑡/Δ𝑡
𝐿𝑡

= 𝑔𝑙 ,

Capital movement law: 𝐾𝑡+1 = 𝐼𝑡 + (1 − 𝛿)𝐾𝑡 ⇔ 𝐾𝑡+1 − 𝐾𝑡 = 𝐼𝑡 − 𝛿𝐾𝑡 ⇔ Δ𝐾𝑡/Δ𝑡
𝐾𝑡

=
𝐼𝑡
𝐾𝑡
− 𝛿.
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1.2 Dynamic Optimization Problem

(2) Continuous-time dynamics means that the variable changes at every time point, 0, 𝛿, 2𝛿, . . ., where 𝛿 > 0. Δ𝑡 is
still used to represent any (small) time interval:

Continuous
compound

growth


𝑆𝑡+Δ𝑡 = 𝑒𝑟Δ𝑡𝑆𝑡 ,

𝐴𝑡+Δ𝑡 = 𝑒𝑔𝑎Δ𝑡 𝐴𝑡 ,

𝐿𝑡+Δ𝑡 = 𝑒𝑔𝑙Δ𝑡𝐿𝑡 ,

Continuous
investment

growth
𝐾𝑡+Δ𝑡 − 𝐾𝑡 = Δ𝑡 𝐼𝑡 − Δ𝑡𝛿𝐾𝑡 .


⇒



𝑆𝑡+Δ𝑡 − 𝑆𝑡
Δ𝑡

=
𝑒𝑟Δ𝑡 − 1

Δ𝑡
𝑆𝑡 ,

𝐴𝑡+Δ𝑡 − 𝐴𝑡
Δ𝑡

=
𝑒𝑔𝑎Δ𝑡 − 1

Δ𝑡
𝐴𝑡 ,

𝐿𝑡+Δ𝑡 − 𝐿𝑡
Δ𝑡

=
𝑒𝑔𝑙Δ𝑡 − 1

Δ𝑡
𝐿𝑡 ,

𝐾𝑡+Δ𝑡 − 𝐾𝑡
Δ𝑡

= 𝐼𝑡 − 𝛿𝐾𝑡 .


Δ𝑡→0
=====⇒



¤𝑆(𝑡) ≡ d𝑆(𝑡)/d𝑡
𝑆(𝑡) = 𝑟,

¤𝐴(𝑡) ≡ d𝐴(𝑡)/d𝑡
𝐴(𝑡) = 𝑔𝑎,

¤𝐿 (𝑡) ≡ d𝐿 (𝑡)/d𝑡
𝐿 (𝑡) = 𝑔𝑙 ,

¤𝐾 (𝑡) ≡ d𝐾 (𝑡)/d𝑡
𝐾 (𝑡) =

𝐼 (𝑡)
𝐾 (𝑡) − 𝛿.

The above derivation uses Taylor’s first-order approximation or l’HÔpital rule, that is,

𝑓 (Δ𝑡) = 𝑒𝑥Δ𝑡 ≈ 𝑓 (0) + 𝑓 ′ (0) d(𝑥Δ𝑡)
dΔ𝑡

(Δ𝑡 − 0) = 1 + 𝑥Δ𝑡 or lim
Δ𝑡→0

𝑒𝑥Δ𝑡 − 1
Δ𝑡

= lim
Δ𝑡→0

d
dΔ𝑡 𝑒

𝑥Δ𝑡

(Δ𝑡)′ = lim
Δ𝑡→0

𝑥

1
= 𝑥.

In discrete time model, Δ𝑋𝑡 ≡ 𝑋𝑡+1 − 𝑋𝑡 �Δ𝑡 ≡ (𝑡 +1) − 𝑡 = 1, where Δ represents the differential operator. Δ𝑡 can also
be used to represent any time interval, and when Δ𝑡 → 0, the problem is converted to a continuous-time problem, that is,
¤𝑋 (𝑡) ≡ d𝑋 (𝑡 )

d𝑡 ≡ lim
Δ𝑡→0

Δ𝑋𝑡

Δ𝑡 � d represents the differential operator. 𝑡 in discrete time problems often appears in the form of a
right subscript, and 𝑡 in continuous time problems is usually represented by brackets.

Furthermore, it is not difficult to imagine that the constraints of dynamic models are divided into endpoint constraints
and process constraints.

(1) Endpoint constraints mainly refer to the initial and final conditions of the decision, which can be constants (fixed)
or parameters (variable). The final conditions can be cross-sectional according to time or state. For simplicity, the initial
and final conditions are given in the dynamic optimization problem introduced below. More specifically, the initial state
and final state are often set to be 0.

(2) Process constraints may occur between decision variables and state variables, between decision variables, or
between state variables. We will see later that from the perspective of establishing a close connection between multivariate
static optimization and discrete dynamic optimization, the constraints between multiple static decision variables can be
formally transformed into constraints between dynamic decision variables and state variables, so this type of constrained
optimal problem can be directly solved by the Lagrangian method, but it is more convenient to use the optimal control
method of the Hamiltonian function in continuous time. If there are still constraints between different decision variables in
the dynamic optimization, the Lagrangian method is used on the basis of the Hamiltonian method. The following explains
that the dynamic optimal solutions for discrete time and continuous time have different focuses. The former focuses on the
decision variables from two periods to multiple periods, and the latter focuses on the state variables with no constraints
and with constraints.

1.2.1 Discrete time

1.2.1.1 Two-period decision-making under perfect expectations

In the static optimization problem with two-variable equality constraints, 𝑥 and 𝑦 are used to represent the two selection
variables.To better compare with the two-period discrete time problem, in the static optimization problem, 𝑥 and 𝑦 are
changed to 𝑥1 and 𝑥2 to represent the two choice variables in the static state. In the dynamic problem, 𝑥1 and 𝑥2 are still
used to represent the two selection variables, but the subscript has the meaning of “time”, which means the selection
variables at time 𝑡 = 1 and 𝑡 = 2.

max←−−→
min
O = 𝑓 (𝑥1, 𝑥2),

s.t. 𝑔(𝑥1, 𝑥2) = 𝑧.

 one-period statics
vs.⇐==⇒ two-period discrete dynamics


max←−−→
min
O = 𝑓 (𝑥1, 𝑥2),

s.t. 𝑔(𝑥1, 𝑥2) = 𝑧.

After comparison, it is not difficult to find that although the meanings of the symbol subscripts are different, the two-
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1.2 Dynamic Optimization Problem

period dynamic optimization problem in discrete time is completely consistent with the static optimization problem with
two-variable equality constraints in form. Therefore, the elimination method, total differentiation method and Lagrange
multiplier method introduced earlier are still effective.

Example 12-1. Two-period consumption decision in an endowment economy
max
𝐶1 ,𝐶2

𝑈 = 𝑢(𝐶1) + 𝛽𝑢(𝐶2),

s.t.

current-period expenditure︷  ︸︸  ︷
𝐶1 + 𝑆1 ≤

current-period income︷                    ︸︸                    ︷
[𝑟 + (1 − 𝛿)]𝑆0 +𝑄1 ,

𝐶2 + 𝑆2︸  ︷︷  ︸
next-period expenditure

≤ [𝑟 + (1 − 𝛿)]𝑆1 +𝑄2︸                    ︷︷                    ︸
next-period income︸                                                   ︷︷                                                   ︸

budget constrain of two periods

.


𝑆0=0=𝑆2
========⇒
𝐶1 ,𝐶2>0

lifetime expenditure︷      ︸︸      ︷
𝐶1 +

𝐶2

1 + 𝑟 =

lifetime income︷       ︸︸       ︷
𝑄1 +

𝑄2

1 + 𝑟︸                                ︷︷                                ︸
lifetime budget constraint

.

Note:

(1) The utility function is assumed to be in a divisible and additive form, that is,𝑈 (𝐶1, 𝐶2) = 𝑢1 (𝐶1) + 𝑢2 (𝐶2);

(2) The utility at different times is different for different moments, and the utility of the second period is measured by
the subjective discount factor 0 < 𝛽 ≡ 1

1+𝜌 < 1 relative to the first period, where 𝜌 > 0 is the subjective discount rate. The
divisible and additive utility function considering the subjective discount rate is𝑈 (𝐶1, 𝐶2) = 𝑢(𝐶1) + 𝛽𝑢(𝐶2);

(3)𝑈 represents the lifetime utility function based on the beginning of the first period; 𝑢(·) represents the immediate
concave utility function, that is, 𝑢′ (·) > 0, 𝑢′′ (·) < 0.

(4) An endowment economy means that the income of the two periods is given, so 𝑄1 and 𝑄2 are both exogenous
and are marked in gray. From the perspective of the first period, 𝑄2 has not yet occurred. This implies the assumption of
perfect expectations, i.e., E1𝑄2 = 𝑄2. E represents the expectation operator, and the subscript 1 represents the information
set of the first period (if there are multiple periods, it represents the information set at the first period).

(5) Assuming that the Inada condition is satisfied, that is, there will always be consumption in each period and no
resources will be wasted, this means that the inequality constraint of the budget constraint in each period are all tight,
and the inequality constraints are transformed into equality constraints (this will be clearer in the inequality constraint
optimization problem introduced later).

(6) Since only two periods are considered, there will be no savings before the first period and no savings in the second
period, so 𝑆0 = 0 = 𝑆2 , which is also the initial condition and the final condition. However, in addition to the endowment
income in the second period, the principal and interest generated by the savings in the first period after depreciation in the
second period will be consumed together, and the actual interest rate is 𝑟 , which is determined by the market price. For the
household sector, it is equivalent to an exogenous variable, also marked in gray. For simplicity, it is assumed that savings
are not depreciated, that is, 𝛿 = 0. If 1 unit of consumer goods in the first period is used as the measurement scale, the
real price of consumer goods in the second period is 1

1+𝑟 ; if 1 unit of consumer goods in the second period is used as the
measurement scale, the real price of the consumer goods in the first period is1 + 𝑟 To understand these two sets of relative
real prices from another perspective, the value of consumer goods at different times should not be directly compared, so
a certain time can be selected as the comparison benchmark. If the first period is selected as the benchmark, assuming
that the real price of consumer goods in the first period is 1, then the real price of consumption in the second period is
equivalent to 1

1+𝑟 from the perspective of the first period, which is the present value in finance; if the second period is
selected as the benchmark, assuming that the real price of consumer goods in the second period is 1, then the real price of
consumer goods in the first period should be (1+ 𝑟) in the second period. In the above model, the real prices of 𝐶1 and 𝑄1

are set to 1, and the real prices 𝐶2 and 𝑄2 are set to 1
1+𝑟 .

(7) The flow budget constraints of period 1 and period 2 are combined through the intermediate link 𝑆1 to obtain the
inter-period lifetime budget constraint (right).

(8) In this two-period optimization problem, the choice variable can be 𝐶1, that is, when 𝐶1 is determined, 𝑆1 can
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1.2 Dynamic Optimization Problem

be determined according to the budget constraint of the first period, and 𝐶2 can be determined according to the budget
constraint of the second period; the choice variable can be 𝐶2, that is, when 𝐶2 is determined, 𝑆1 can be determined
according to the budget constraint of the second period, and 𝐶1 can be determined according to the budget constraint of
the first period; the choice variable can also be 𝑆1, that is, when 𝑆1 is determined, 𝐶1 can be determined according to the
budget constraint of the first period, and 𝐶2 can be determined according to the budget constraint of the second period.
The choice variable is also called the control variable, and the control variable 𝑆1 can also be called the endogenous state
variable, and 𝑆0 is called the initial state variable or the predetermined state variable.

i) Elimination method

Elimination method 1. Eliminate 𝐶2 in the objective function according to the lifetime budget constraint, and only
𝐶1 is left for the choice variable, which becomes an unconstrained optimization problem:

max
𝐶1

𝑈 = 𝑢(𝐶1) + 𝛽𝑢 [(1 + 𝑟)(𝑄1 − 𝐶1) +𝑄2]︸                          ︷︷                          ︸
𝐶2

.

The first-order necessary condition is:

d𝑈
d𝐶1

= 0 ⇒

︷    ︸︸    ︷
𝛽𝑢′ (𝐶2)
𝑢′ (𝐶1)︸    ︷︷    ︸

MRS

=

︷     ︸︸     ︷
1

1 + 𝑟︸︷︷︸
relative price

.

The second-order sufficient condition is:
d2𝑈

d𝐶2
1
=

d
d𝐶1
[𝑢′ (𝐶1) − 𝛽(1 + 𝑟)𝑢′ (𝐶2)] = 𝑢′′ (𝐶1) + 𝛽2 (1 + 𝑟)2𝑢′′ (𝐶2) < 0.

It can be seen that in order to ensure that the utility function reaches the maximum value, it should be hold that
𝑢′′ (𝐶1) < 0 and 𝑢′′ (𝐶2) < 0. The second-order derivative of the utility function is less than 0 everywhere, so the
immediate utility function is a concave function, and the lifetime utility function is the linear addition of the immediate
utility function, which is also a concave function. Therefore, the local maximum is also the global maximum.

Elimination method 2. Eliminate 𝐶1 in the objective function according to the lifetime budget constraint, and only
𝐶2 is left for the choice variable, which becomes an unconstrained optimization problem:

max
𝐶2

𝑈 = 𝑢

(
𝑄1 +

𝑄2

1 + 𝑟 −
𝐶2

1 + 𝑟

)
︸                     ︷︷                     ︸

𝐶1

+𝛽𝑢(𝐶2).

The first-order necessary conditions are:

d𝑈
d𝐶2

= 0 ⇒

︷    ︸︸    ︷
𝛽𝑢′ (𝐶2)
𝑢′ (𝐶1)︸    ︷︷    ︸

MRS

=

︷     ︸︸     ︷
1

1 + 𝑟︸︷︷︸
realtive price

.

Elimination method 3. Since there are two forms of flow budget constraints and lifetime budget constraints, in addition
to solving it according to the elimination method of a lifetime budget constraint, it can also be solved according to two
flow budget constraints:

𝐶1 =
hhhhhhh[𝑟 + (1 − 𝛿)]𝑆0 +𝑄1 − 𝑆1,

𝐶2 = [𝑟 + (1 − 𝛿)]𝑆1 +𝑄2 −@@𝑆2.

}
⇒ max

𝑆1
𝑈 = 𝑢

𝐶1︷      ︸︸      ︷
(𝑄1 − 𝑆1) +𝛽𝑢

𝐶2︷                       ︸︸                       ︷
([𝑟 + (1 − A𝛿)]𝑆1 +𝑄2) .

44



ide
ng

yf.
git

hu
b.i

o

1.2 Dynamic Optimization Problem

The first-order necessary condition is:

d𝑈
d𝑆1

= 0
−𝑢′ (𝐶1 )+(1+𝑟 )𝛽𝑢′ (𝐶2 )=0
=======================⇒

︷    ︸︸    ︷
𝛽𝑢′ (𝐶2)
𝑢′ (𝐶1)︸    ︷︷    ︸

MRS

=

︷     ︸︸     ︷
1

1 + 𝑟︸︷︷︸
relative price

.

The second-order conditions of elimination methods 2 and 3 can be obtained by taking the second-order derivatives
of the corresponding choice variables.

ii) Differentiation method

On the 𝐶1-𝐶2 plane, the slope of the indifference curve or isoutility curve (d𝑈 = 0) is:

0 = 𝑢′ (𝐶1)d𝐶1 + 𝛽𝑢′ (𝐶2)d𝐶2 ⇒ d𝐶2

d𝐶1
= − 𝑢

′ (𝐶1)
𝛽𝑢′ (𝐶2)

.

On the 𝐶1-𝐶2 plane, when the incomes of two periods (d𝑌1 = 0 = d𝑌2) are fixed, the slope of the dynamic budget
constraint line is:

d𝐶1 +
1

1 + 𝑟 d𝐶2 = 0 + 0 ⇒ d𝐶2

d𝐶1
= −(1 + 𝑟).

At the local or global maximum, the two are equal, resulting in the same first-order necessary condition:
𝛽𝑢′ (𝐶2)
𝑢′ (𝐶1)

=
1

1 + 𝑟 .

iii) Multiplier method

Constructing the Lagrangian function, the Lagrange multiplier 𝜆 is added into the choice variables in the optimization
problem:

max
𝐶1 ,𝐶2 ,𝜆

L ≡ [𝑢(𝐶1) + 𝛽𝑢(𝐶2)] + 𝜆
[(
𝑄1 +

𝑄2

1 + 𝑟

)
−

(
𝐶1 +

𝐶2

1 + 𝑟

)]
.

The first-order necessary conditions are:
𝜕L
𝜕𝐶1

= 𝑢′ (𝐶1) − 𝜆 = 0,

𝜕L
𝜕𝐶2

= 𝛽𝑢′ (𝐶2) − 𝜆
1

1 + 𝑟 = 0,

𝜕L
𝜕𝜆

=

(
𝑄1 +

𝑄2

1 + 𝑟

)
−

(
𝐶1 +

𝐶2

1 + 𝑟

)
= 0.

The third first-order condition is the dynamic budget constraint. Eliminating 𝜆 from the first two first-order conditions,
we merge them to:

𝛽𝑢′ (𝐶2)
𝑢′ (𝐶1)

=
1

1 + 𝑟 ⇔ 𝑢′ (𝐶1) = 𝛽(1 + 𝑟)𝑢′ (𝐶2).

This is the well-known intertemporal Euler equation in dynamic macroeconomics. It states that consuming one unit
less in the first period will reduce the marginal utility of the first period 𝑢′ (𝐶1), but the reduced consumption will increase
income in the second period by 1+𝑟 after being saved, which will bring about an increase in marginal utility 𝛽(1+𝑟)𝑢′ (𝐶2)
with the first period as the base period. At the optimal point, the two are equal (marginal cost equals marginal benefit).

We can also construct the Lagrangian function through the Lagrange multiplier 𝜇 according to the dual problem:

min
𝐶1 ,𝐶2

𝐸 = 𝐶1 +
𝐶2

1 + 𝑟 ,

s.t. 𝑢(𝐶1) + 𝛽𝑢(𝐶2) ≥ 𝑈
Inada conditions
=============⇒ 𝑢(𝐶1) + 𝛽𝑢(𝐶2) = 𝑈.

⇒ min
𝐶1 ,𝐶2 ,𝜇

L ≡
(
𝐶1 +

𝐶2

1 + 𝑟

)
+ 𝜇{𝑈 − [𝑢(𝐶1) + 𝛽𝑢(𝐶2)]}.
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The first-order necessary conditions are:
𝜕L
𝜕𝐶1

= 1 − 𝜇𝑢′ (𝐶1) = 0,

𝜕L
𝜕𝐶2

=
1

1 + 𝑟 − 𝜇𝛽𝑢
′ (𝐶2) = 0,

𝜕L
𝜕𝜇

= 𝑈 − [𝑢(𝐶1) + 𝛽𝑢(𝐶2)] = 0.

The third first-order condition is to fix the utility level. The first two first-order conditions eliminate 𝜇 and merge into:
𝛽𝑢′ (𝐶2)
𝑢′ (𝐶1)

=
1

1 + 𝑟 .

The first-order conditions of the original problem and the dual problem are exactly the same. However, it is easy to
find that the Lagange multipliers 𝜆 and 𝜇 are reciprocals, that is, 𝜆𝜇 = 1.

Example 12-2. Two-period consumption decision of a production economy 5

max
𝐶1 ,𝐶2

𝑈 = 𝑢(𝐶1) + 𝛽𝑢(𝐶2),

s.t.

budget constraints of two periods︷                     ︸︸                     ︷
𝐶1 + 𝐾2 ≤ 𝐴1𝐾1,

𝐶2 + 𝐾3 ≤ 𝐴2𝐾2.

}
︸                  ︷︷                  ︸
𝐾2=𝐼1+(1−𝛿 )𝐾1

𝛿=1⇒𝐾2=𝐼1

𝐾1 given, 𝐾3=0
=============⇒

𝐶1 ,𝐶2>0

{
𝐶1 + 𝐾2 = 𝐴1𝐾1,

𝐶2 + 0 = 𝐴2𝐾2.

}
⇒

lifetime expenditure︷    ︸︸    ︷
𝐶1 +

𝐶2

𝐴2
=

lifetime income︷︸︸︷
𝐴1𝐾1︸                                ︷︷                                ︸

lifetime budget constraint

.

Constructing the Lagrangian function, the Lagrange multiplier 𝜆 is added into the choice variables in the optimization
problem:

max
𝐶1 ,𝐶2 ,𝜆

L ≡ [𝑢(𝐶1) + 𝛽𝑢(𝐶2)] + 𝜆
(
𝐴1𝐾1 − 𝐶1 −

𝐶2

𝐴2

)
.

The first-order necessary conditions are:
𝜕L
𝜕𝐶1

= 𝑢′ (𝐶1) − 𝜆 = 0,

𝜕L
𝜕𝐶2

= 𝛽𝑢′ (𝐶2) − 𝜆
1
𝐴2

= 0,

𝜕L
𝜕𝜆

= 𝐴1𝐾1 − 𝐶1 −
𝐶2

𝐴2
= 0.

Slightly tidy up:

𝛽𝑢′ (𝐶◦2 )
𝑢′ (𝐶◦1 )

=
1
𝐴2
,

𝐶1 +
𝐶2
𝐴2

= 𝐴1𝐾1.


𝑢(𝐶𝑡 )=

𝐶
1− 1

𝜎
𝑡 −1

1− 1
𝜎

================⇒
𝑢(𝐶𝑡 )=log𝐶𝑡

CES


(
𝐶◦2
𝐶◦1

)− 1
𝜎

=
1
𝛽𝐴2

,

𝐴2𝐶1 + 𝐶2 = 𝐴1𝐴2𝐾1.


⇒




𝐶⊗1 =

(
1

𝛽𝐴2

)𝜎
𝐴2

1+
(

1
𝛽𝐴2

)𝜎
𝐴2
𝐴1𝐾1,

𝐶⊗2 = 𝐴2

1+
(

1
𝛽𝐴2

)𝜎
𝐴2
𝐴1𝐾1.

𝑌1=𝐴1𝐾1
=========⇒


𝐼⊗1 = 𝐴1𝐾1 − 𝐶⊗1 = 1

1+
(

1
𝛽𝐴2

)𝜎
𝐴2
𝐴1𝐾1,

𝐾⊗2 = 𝐼⊗1 ,

𝑄⊗2 = 𝐴2𝐾
⊗
2 = 𝐴2

1+
(

1
𝛽𝐴2

)𝜎
𝐴2
𝐴1𝐾1.

.

logarithm

{
𝐶◦2 = 𝛽𝐴2𝐶

◦
1 ,

𝐴2𝐶1 + 𝐶2 = 𝐴1𝐴2𝐾1.

}
⇒




𝐶⊗1 = 1

1+𝛽 𝐴1𝐾1,

𝐶⊗2 = 𝛽𝐴2
1+𝛽 𝐴1𝐾1.

𝑄1=𝐴1𝐾1
==========⇒


𝐼⊗1 = 𝐴1𝐾1 − 𝐶⊗1 = 𝛽

1+𝛽 𝐴1𝐾1,

𝐾⊗2 = 𝐼⊗1 ,

𝑄⊗2 = 𝐴2𝐾
⊗
2 = 𝛽𝐴2

1+𝛽 𝐴1𝐾1.

5This example refers to Moll (2023) but adds the logarithm utility case to make it more clear.
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1.2 Dynamic Optimization Problem

The above lists the first-order conditions corresponding to the current-value utility function when the intertemporal
substitution elasticity is not 1 (CES) and is 1 (logarithm). Combined with the constraints (which can also be said to be the
components of the first-order conditions), the optimal consumption in the first period 𝐶1, the optimal consumption in the
second period 𝐶2, the optimal investment in the first period 𝐼1 , the optimal capital in the second period 𝐾2 and the optimal
output in the second period 𝑌2 can be solved. Since the capital in the first period 𝐾1 is given, the output in the first period
𝑌1 is directly given. But in general, they are all functions of exogenous technical variables 𝐴1 and (or) 𝐴2.

Note that the optimal solution is a type of equilibrium, called the goal equilibrium. Therefore, the content of this
chapter is a special case of the next chapter “Equilibrium Solution”. In addition, these optimal solutions are explicit solu-
tions (also called analytical solutions) , whose characteristics are that each endogenous variable is completely determined
by the given initial state variables 𝐾1 or exogenous variables (𝐴1, 𝐴2) or parameters (𝜎, 𝛽). Initial state variables, exoge-
nous variables or parameters can be collectively classified as exogenous variables, and this form of solution is also called
a “simplified equation”. If the goal equilibrium is a simplified equation and the corresponding function is continuously
differentiable, the impact of changes in exogenous variables (also generally referred to as “shocks”) on endogenous vari-
ables can be analyzed through calculus methods (that is, “comparative analysis”. A systematic introduction to equilibrium
solution and comparative analysis will be left after this chapter.

1.2.1.2 Multi-period decision-making under perfect expectations

In dynamics, we expand the scope from two-period questions to multi-period questions. Multi-period questions can
still be divided into questions with finite periods and questions with infinite periods. Finite periods are represented by 𝑚
or 𝑇 , and 𝑚 →∞ or 𝑇 →∞ represents infinite periods.

I. Finite periods

In the static optimization problems with multiple variables and multiple equality constraints, 𝑥1, 𝑥2, . . . , 𝑥𝑚 is used
to represent 𝑚 choice variables. In the discrete time dynamic optimization problems with 𝑚 periods, 𝑥1, 𝑥2, . . . , 𝑥𝑚 are
used to represent 𝑚 choice variables, but the subscripts represent the time 𝑡 = 1, 𝑡 = 2, . . . , 𝑡 = 𝑚. It is not difficult to find
that multi-variable static problems and multi-period discrete dynamic prbolems have great similarities. In order to avoid
confusion, it is better to change the symbol 𝑚 to 𝑇 .

max←−−→
min
O = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑚),

s.t. 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑧.


max←−−→
min
O = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑚),

s.t. 𝑔1 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑧1,
𝑔2 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑧2,

...

𝑔𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑚) = 𝑧𝑛.





multi-variable
static

vs.
multi-period

discrete dynamic




max←−−→
min
O = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑇 ),

s.t. 𝑔(𝑥1, 𝑥2, . . . , 𝑥𝑇 ) = 𝑧.

max←−−→
min
O = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑇 ),

s.t. 𝑔1 (𝑥1, 𝑥2) = 𝑧1,
𝑔2 (𝑥2, 𝑥3) = 𝑧2,

...

𝑔𝑇−1 (𝑥𝑇−1, 𝑥𝑇 ) = 𝑧.

Although the meanings of the subscripts are different, the discrete-time 𝑇-period dynamic optimization problem
and the 𝑚-variable static optimization problem with single or multiple equality constraints are still quite similar in form.
The difference is that in the static model, problems with single or multiple equality constraints are two different types of
optimization problems, while in the dynamic model, multiple equality constraints may be transformed to one constraint,
as shown in the following example.
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1.2 Dynamic Optimization Problem

Example13-0. Finite-period consumption decision of an endowment economy6

max←−−→
min

𝑈 = 𝑢(C),

s.t. P · C ≤ P ·Q,
C ≥ 0.


contemporaneous

discrete state
vs.⇐==⇒ multi-period

discrete dynamic


max←−−→
min

𝑈 = 𝑢(C),

s.t. P · C ≤ P ·Q,
C ≥ 0.

where: P and Q are the exogenous price vector and exogenous income vector respectively. According to the above
Inada condition, the consumption vector C is always positive, so the inequality constraint problem can be avoided first:

max←−−→
min

𝑈 = 𝑢(C),

s.t. P · C = P ·Q.


contemporaneous

discrete state
vs.⇐==⇒ multi-period

discrete dynamic


max←−−→
min

𝑈 = 𝑢(C),

s.t. P · C = P ·Q.

No matter it is a single-period static problem(X = {X𝑖},X = {C,P,Q}, 𝑖 = 1, 2, . . . , 𝑚) or a multi-period dynamic
problem (X = {X𝑡 },X = {C,P,Q}, 𝑡 = 1, 2, . . . , 𝑇), this is a standard equality-constrained optimization problem, which
can be solved by constructing a Lagrangian function:

max
C
L ≡ 𝑢(C) + 𝜆P · (Q − C).

F.O.C.
=====⇒ ∇𝑢(C) = 𝜆P,

⇒ C = C(𝜆P),
substitute into the constraint
======================⇒ P · C(𝜆P) = P ·Q,

⇒ 𝜆 = 𝜆(P,Q),
⇒ C◦ = C◦ [𝜆(P,Q)P] = C◦ (P,Q).

The price level has both a direct effect on consumption, namely the substitution effect, and an indirect effect, namely
the income effect (and the wealth effect in the dynamics), which is generated through the Lagrange multiplier 𝜆 The
substitution effect, income effect, and wealth effect of price changes are essentially the subject of comparative analysis,
which will be discussed in Chapter 3.

For the discrete-time dynamic problem, the first-order condition can also be expressed as:

𝑢′ (𝐶𝑡 ) = 𝜆P, 𝑡 = 1, 2, . . .

The ratio of the marginal utilities of two consecutive periods represents the marginal rate of substitution. The optimal
marginal rate of substitution is equal to the price ratio (relative price) of two consecutive periods:

𝑢′ (𝐶𝑡+1)
𝑢′ (𝐶𝑡 )

=
𝑃𝑡+1
𝑃𝑡

.

It is a first-order difference equation about consumption (also known as the intertemporal Euler equation on consump-
tion).

Using the divisible and additive lifetime utility function, the above formula can be rewritten as:

𝑈1 (C) =
𝑇∑
𝑡=1

𝛽𝑡−1𝑢(𝐶𝑡 ),

⇒ 𝛽𝑢′ (𝐶𝑡+1)
𝑢′ (𝐶𝑡 )

=
𝑃𝑡+1
𝑃𝑡

.

After adding the subjective discount factor 𝛽 , the total utility is the sum of future utilities discounted to the present
(period 1) (i.e.,𝑈1)�

The inter-period consumption Euler equation is also obtained here, and its economic meaning is the same as that in
the two-period consumption decision, except that the balance of consumption and savings between the first and second
periods becomes the balance of consumption and savings between any two periods.

6This example is adapted fromEdmond (2019).
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1.2 Dynamic Optimization Problem

Example 13-1. Finite-period consumption decision in an endowment economy

The finite-period objective function is still assumed to be separable and additive, and the liquidity budget constraints
of each period can be written as inter-period lifetime budget constraints. Therefore, the finite-period optimization problem
is:

max
𝐶1 ,𝐶2 ,...,𝐶𝑇

𝑈1 = 𝑢(𝐶1) + 𝛽𝑢(𝐶2) + · · · + 𝛽𝑇−1𝑢(𝐶𝑇 ),

s.t.

︷                                   ︸︸                                   ︷
𝐶1 + 𝑆1 ≤ (1 + 𝑟)𝑆0 +𝑄1,

𝐶2 + 𝑆2 ≤ (1 + 𝑟)𝑆1 +𝑄2,

...

𝐶𝑇 + 𝑆𝑇 ≤ (1 + 𝑟)𝑆𝑇−1 +𝑄𝑡 ,
0 ≤ 𝐶1, 𝐶2, . . . , 𝐶𝑇 .

︸                                   ︷︷                                   ︸
budget constraint of each period

𝑆0=0=𝑆𝑇
===========⇒
𝐶1 ,...,𝐶𝑇>0

lifetime expenditure︷                                 ︸︸                                 ︷
𝐶1 +

𝐶2

1 + 𝑟 + · · · +
𝐶𝑇

(1 + 𝑟)𝑇−1 =

lifetime income︷                                 ︸︸                                 ︷
𝑄1 +

𝑄2

1 + 𝑟 + · · · +
𝑄𝑡

(1 + 𝑟)𝑇−1︸                                                                              ︷︷                                                                              ︸
finite-period lifetime budget constraint

.

The above multiple budget constraints can be rewritten into a single inter-period lifetime budget constraint similar
to the two-period case. Solving 𝐶𝑇 and substituting it into the objective function, the finite-period dynamic optimiza-
tion problem with equality constraints becomes an unconstrained optimization problem. Taking the partial derivative of
𝐶1, 𝐶2, . . . , 𝐶𝑇−1 , we can get 𝑇 − 1 first-order conditions. However, when there are many variables, it may be easier to
construct a Lagrangian function to solve:

max
𝐶1 ,𝐶2 ,...,𝐶𝑇 ,𝜆

L ≡

lifetime utility︷                                             ︸︸                                             ︷[
𝑢(𝐶1) + 𝛽𝑢(𝐶2) + · · · + 𝛽𝑇−1𝑢(𝐶𝑇 )

]
+𝜆

lifetime budget constraint︷                                                                                         ︸︸                                                                                         ︷[(
𝑄1 +

𝑄2
1 + 𝑟 + · · · +

𝑄𝑡

(1 + 𝑟)𝑇−1

)
−

(
𝐶1 +

𝐶2
1 + 𝑟 + · · · +

𝐶𝑇

(1 + 𝑟)𝑇−1

)]
.

The first-order necessary conditions are:
𝜕L
𝜕𝐶1

= 𝑢′ (𝐶1) − 𝜆 = 0,

𝜕L
𝜕𝐶2

= 𝛽𝑢′ (𝐶2) − 𝜆
1

1 + 𝑟 = 0,

𝜕L
𝜕𝐶3

= 𝛽2𝑢′ (𝐶3) − 𝜆
(

1
1 + 𝑟

)2
= 0,

...

𝜕L
𝜕𝐶𝑇

= 𝛽𝛽−1𝑢′ (𝐶𝑇 ) − 𝜆
(

1
1 + 𝑟

)𝑇−1
= 0,

𝜕L
𝜕𝜆

=

(
𝑄1 +

𝑄2

1 + 𝑟 + · · · +
𝑄𝑚

(1 + 𝑟)𝑇−1

)
−

(
𝐶1 +

𝐶2

1 + 𝑟 + · · · +
𝐶𝑇

(1 + 𝑟)𝑇−1

)
= 0.

The last one is the repetition of lifetime expectation constraint. The first 𝑚 first-order conditions are combined into
the consumption Euler equation for any two consecutive periods:

𝛽𝑢′ (𝐶𝑡+1)
𝑢′ (𝑡) =

1
1 + 𝑟 , 𝑡 = 1, 2, . . . , 𝑇 .

Since 𝑡 is used to represent a discrete moment, we can also replace the objective function and flow budget constraint
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1.2 Dynamic Optimization Problem

with 𝑡:

max
{𝐶𝑡 }𝑇𝑡=1

𝑈1 ≡
𝑇∑
𝑡=1

𝛽𝑡−1𝑢(𝐶𝑡 ),

s.t.
𝐶𝑡 + 𝑆𝑡 ≤ (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 ,

0 ≤ 𝐶𝑡 .

}
𝑡 = 1, 2, . . . , 𝑇 .

given 𝑆0 = 0 = 𝑆𝑇 .


lim

𝐶𝑡→0
𝜕𝑢( ·)
𝜕𝐶𝑡

=∞⇒ 𝐶𝑡>0

====================⇒
lim

𝐶𝑡→∞
𝜕𝑢( ·)
𝜕𝐶𝑡

=0⇒ 𝐶𝑡<∞



max
{𝐶𝑡 }𝑇𝑡=1

𝑈1 ≡
𝑇∑
𝑡=1

𝛽𝑡−1𝑢(𝐶𝑡 ),

s.t.

{
𝐶𝑡 + 𝑆𝑡 = (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 ,

𝑡 = 1, 2, . . . , 𝑇 .

given 𝑆0 = 0 = 𝑆𝑇 .

This is an optimization problem with superposition of non-negative constraints and inequality constraints, but based
on the Inada condition, the inequality can be made a tight constraint to exclude corner point solutions. Therefore, the
Lagrangian function can be directly reconstructed:

max
{𝐶𝑡 ,𝑆𝑡 ,𝜆𝑡 }𝑇𝑡=1

L ≡
𝑇∑
𝑡=1

𝛽
𝑡−1

period utility function︷︸︸︷
𝑢(𝐶𝑡 ) +𝜆𝑡

flow budget constraint︷                                  ︸︸                                  ︷
[(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − (𝐶𝑡 + 𝑆𝑡 )]

 .
The first-order necessary conditions are:

𝜕L
𝜕𝐶𝑡

= 𝛽𝑡−1 [𝑢′ (𝐶𝑡 ) − 𝜆𝑡 ] = 0,

𝜕L
𝜕𝑆𝑡

= −𝜆𝑡 + 𝜆𝑡+1 (1 + 𝑟) = 0,

𝜕L
𝜕𝜆𝑡

= (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − (𝐶𝑡 + 𝑆𝑡 ) = 0.

The third condition is the budget constraint. Putting The first condition one period ahead:

𝑢′ (𝐶𝑡 ) = 𝜆𝑡 ⇒ 𝑢′ (𝐶𝑡+1) = 𝜆𝑡+1.

Combining two periods and using the second first-order condition gives us the familiar consumption Euler equation:
𝑢′ (𝐶𝑡+1)
𝑢′ (𝐶𝑡 )

=
𝜆𝑡+1
𝜆𝑡

=
1

𝛽(1 + 𝑟) ⇒ 𝛽𝑢′ (𝐶𝑡+1)
𝑢′ (𝐶𝑡 )

=
1

1 + 𝑟 vs.
𝛽𝑢′ (𝐶𝑡+1)
𝑢′ (𝐶𝑡 )

=
𝑃𝑡+1
𝑃𝑡

.

Note that the liquidity budget constraint for period 𝑚 is used here, so 𝑇 Lagrange multipliers {𝜆𝑡 }𝑇𝑡=1 are used. If
combining the difference equation 𝑆𝑡 = (1 + 𝑟)𝑆𝑡−1 + (𝑄𝑡 − 𝐶𝑡 ) about savings with the initial conditions 𝑆0 = 0 and the
terminal conditions 𝑆𝑇 = 0 according to the relevant assumptions, a single inter-period lifetime expectation constraint can
still be obtained, then the problem can be solved by constructing a Lagrangian function with only one multiplier 𝜆. In
addition, in this example, the price of any period is 1, and the price of period 𝑡 + 1 discounted to period 𝑡 is 1

1+𝑟 , so the

ratio of the price of period 𝑡 + 1 to that of period 𝑡 (i.e., relative price) is
1

1+𝑟
1 = 𝑃𝑡+1

𝑃𝑡
.

In other words:
marginal cost in period 𝑡︷ ︸︸ ︷

𝑢′ (𝐶𝑡 )︸                 ︷︷                 ︸
loss of marginal utility

when the consumption in period 𝑡
decreases by 1 unit

=

marginal revenue discounted to period 𝑡︷               ︸︸               ︷
𝛽(1 + 𝑟)𝑢′ (𝐶𝑡+1)︸                                ︷︷                                ︸
gain of marginal utility

in period 𝑡+1 for more consumption
brought by savings

.

II. Infinite periods

Example 13-2. Infinite-period consumption decision in an endowment economy

It is also more convenient to use the subscript 𝑡 to represent infinite dynamic optimization problems, 𝑡 = 1→ 𝑇 →∞
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1.2 Dynamic Optimization Problem

and thus 𝑡 = 1→∞ to represent the transition from finite to infinite:

max
{𝐶𝑡 }∞𝑡=1

𝑈1 ≡
∞∑
𝑡=1

𝛽𝑡−1𝑢(𝐶𝑡 ),

s.t.

{
𝐶𝑡 + 𝑆𝑡 ≤ (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 ,

0 ≤ 𝐶𝑡 .

}
𝑡 = 1, 2, . . . ,∞.

given 𝑆0 = 0 = lim
𝑡→∞

𝑆𝑡 .


𝐶𝑡>0
=====⇒
𝐶𝑡<∞



max
{𝐶𝑡 }∞𝑡=1

𝑈1 ≡
∞∑
𝑡=1

𝛽𝑡−1𝑢(𝐶𝑡 ),

s.t.
𝐶𝑡 + 𝑆𝑡 = (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 ,

𝑡 = 1, 2, . . . ,∞.

given 𝑆0 = 0 = lim
𝑡→∞

𝑆𝑡 .

where 0 < 𝐶𝑡 < ∞ comes from the aforementioned Inada condition.

i) Multiplier method

In order to smoothly transition from the static model to the dynamic model, the variable subscripts have been mapped
one by one. The above is given 𝑆0 and the optimization problem starts from 𝑡 = 1 . Let’s give 𝑆−1and let the optimization
problem start from 𝑡 = 0 here, that is:

max
{𝐶𝑡 }∞𝑡=0

𝑈0 ≡
∞∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡 ),

s.t. 𝐶𝑡 + 𝑆𝑡 = (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 ,
given 𝑆−1 = 0 = lim

𝑡→∞
𝑆𝑡 .

After fine-tuning, the constructed Lagrangian function is:

max
{𝐶𝑡 ,𝑆𝑡 ,𝜆𝑡 }∞𝑡=0

L ≡
∞∑
𝑡=0

{
𝛽𝑡𝑢(𝐶𝑡 ) + 𝜆𝑡 [(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − (𝐶𝑡 + 𝑆𝑡 )]

}
.

Derivatives are taken for the choice variables 𝐶𝑡 , 𝑆𝑡 , 𝜆𝑡 respectively, and the results are the same as those in the finite-
peroid dynamic optimization. Combining the consumption Euler equation with the flow budget constraint, the consumption
demand equation for each period can be obtained. If an explicit expression of the consumption demand function is to be
obtained, the immediate utility function needs to be defined.

ii) Planning method

The difference from static optimization problems is that in addition to common methods such as Lagrangian, there
are also dynamic programming methods available.

Step 1) According to the budget constraint, we can solve:

𝐶𝑡 = (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 .

Substituting into the objective function, the dynamic optimization problem with equality constraints becomes uncon-
strained:

max
{𝑆𝑡 }∞𝑡=0

∞∑
𝑡=0

𝛽𝑡𝑢[(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ], 𝛽 ∈ (0, 1).

Step 2) Use 𝑉 (𝑆−1, 𝑌0) to represent the value function that optimizes the objective function given the initial state:

𝑉 (𝑆−1, 𝑄0) ≡ max
{𝑆𝑡 }∞𝑡=0

∞∑
𝑡=0

𝛽𝑡𝑢[

𝐶𝑡︷                      ︸︸                      ︷
(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ],

= max
{𝑆𝑡 }∞𝑡=0

{
𝑢[(1 + 𝑟)𝑆−1 +𝑄0 − 𝑆0] +

∞∑
𝑡=1

𝛽𝑡𝑢[(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ]
}
,

= max
{𝑆𝑡 }∞𝑡=0

{
𝑢[(1 + 𝑟)𝑆−1 +𝑄0 − 𝑆0] + 𝛽

∞∑
𝑡=1

𝛽𝑡−1𝑢[(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ]
}
,

= max
𝑆0

{
𝑢[(1 + 𝑟)𝑆−1 +𝑄0 − 𝑆0] + 𝛽 max

{𝑆𝑡 }∞𝑡=0

∞∑
𝑡=1

𝛽𝑡−1𝑢[(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ]
}
,
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1.2 Dynamic Optimization Problem

= max
𝑆0

𝑢[(1 + 𝑟)𝑆−1 +𝑄0 − 𝑆0︸                     ︷︷                     ︸
𝐶0

] + 𝛽𝑉 (𝑆0, 𝑄1)

 .
Without loss of generality, we can also use 𝑆𝑡−1 as the initial state variable and 𝑆𝑡 as the control variable to achieve

inter-period lifetime optimization:

value function︷        ︸︸        ︷
𝑉 (𝑆𝑡−1, 𝑄𝑡 ) = max

𝑆𝑡



𝑆𝑡 as state variable of
the subsequent optimization︷                                                                          ︸︸                                                                          ︷

𝑢[

𝐶𝑡︷                      ︸︸                      ︷
(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ] + 𝛽

𝑆𝑡+1 is chosen to achieve
the subsequent optimization︷                                  ︸︸                                  ︷

𝑉 (𝑆𝑡 , 𝑄𝑡+1)︸        ︷︷        ︸
𝑆𝑡 is chosen to achieve ovarall

(including the initial period) optimization

︸                                                                                                          ︷︷                                                                                                          ︸
𝑆𝑡−1 as state variable of the optimization

.

The dynamic optimization problem in the form of the recursive functional described above is called the Bellman
equation. 7 Now what needs to be solved is not a variable that can be assigned a specific value, but a path function, that
is, given the exogenous 𝑢(𝐶𝑡 ), 𝑄𝑡 , 𝛽, we need to solve the endogenous function 𝑉 (𝑆𝑡−1).

Step 3) Observe the right side of the Bellman equation. If 𝑉 (𝑆𝑡 , 𝑄𝑡+1)is known, it is equivalent to a two-period
dynamic optimization problem. It is easy to find the first-order condition and solve the control variable to obtain the policy
function:

max
𝑆𝑡

𝑢[
𝐶𝑡︷                      ︸︸                      ︷

(1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ] + 𝛽𝑉 (𝑆𝑡 , 𝑄𝑡+1)

 ,
F.O.C.
=====⇒ 𝑢′ (𝐶𝑡 )

𝜕𝐶𝑡
𝜕𝑆𝑡
+ 𝛽d𝑉 (𝑆𝑡 , 𝑄𝑡+1)

d𝑆𝑡
= 0,

𝜕𝐶𝑡
𝜕𝑆𝑡

=−1
=======⇒ 𝛽

d𝑉 (𝑆𝑡 , 𝑄𝑡+1)
d𝑆𝑡

= 𝑢′ (𝐶𝑡 ).

Note that 𝑢′ (𝐶𝑡 ) is a function of 𝑆𝑡−1, 𝑆𝑡 , 𝑄𝑡 , which is 𝑢′ (𝐶𝑡 ) = 𝑢′ (𝐶𝑡 ) (𝑆𝑡−1, 𝑆𝑡 , 𝑄𝑡 ).

The meaning of the first-order condition above is that, given that the objective function of the 𝑡 + 1-th period has been
optimized, then choosing 𝑆𝑡 makes it optimal from the 𝑡-th period onwards, thus forming a recursive selection structure.
In other words, if 𝑉 (𝑆𝑡 , 𝑄𝑡+1) is known, its derivative with respect to 𝑆𝑡 can be calculated, and thus the policy function
or decision plan 𝑆𝑡 = 𝑔(𝑆𝑡−1) = arg max

𝑆𝑡
[𝑢(𝑆𝑡−1, 𝑆𝑡 ) + 𝛽𝑉 (𝑆𝑡 )] can be solved. The question then becomes how to solve

d𝑉 (𝑆𝑡 ,𝑄𝑡+1 )
d𝑆𝑡 �

7Named after the discoverer of this form, American mathematician Richard Bellman (1920-1984)

52



ide
ng

yf.
git

hu
b.i

o

1.2 Dynamic Optimization Problem

Step 4) Observe the left side of the Bellman equation. Put it one period ahead, we have:

value function︷        ︸︸        ︷
𝑉 (𝑆𝑡 , 𝑄𝑡+1) = max

𝑆𝑡+1



𝑆𝑡+1 as state variable of
the subsequent optimization︷                                                                                  ︸︸                                                                                  ︷

𝑢[

𝐶𝑡+1︷                         ︸︸                         ︷
(1 + 𝑟)𝑆𝑡 +𝑄𝑡+1 − 𝑆𝑡+1] + 𝛽

𝑆𝑡+2 is chosen to achieve
the subsequent optimization︷                                      ︸︸                                      ︷

𝑉 (𝑆𝑡+1, 𝑄𝑡+2)︸           ︷︷           ︸
𝑆𝑡+1 is chosen to achieve ovarall

(including the initial period) optimization

︸                                                                                                                  ︷︷                                                                                                                  ︸
𝑆𝑡 as state variable of the optimization

identical structure⇐===============⇒
different initial state

𝑉 (𝑆𝑡−1, 𝑄𝑡 ).

The condition obtained by choosing 𝑆𝑡+1 after putting the equation one period ahead are the same as those in the
previous step, but the problem to be solved in the previous step is the derivative of the value function of the previous
period with respect to the state variable 𝑆𝑡 . The policy function based on the value function is 𝑆𝑡+1 = 𝑔(𝑆𝑡 ), so the
Bellman equation of the period in advance can also be written as:

optimal value fuction︷        ︸︸        ︷
𝑉 (𝑆𝑡 , 𝑄𝑡+1) = 𝑢[(1 + 𝑟)𝑆𝑡 +𝑄𝑡+1 − 𝑆𝑡+1 (𝑆𝑡 )] + 𝛽

optimal value fuction︷                ︸︸                ︷
𝑉 [𝑆𝑡+1 (𝑆𝑡 ), 𝑄𝑡+1] .

According to the envelope theorem (comparative analysis of value functions with respect to state variables), it can be
calculated: 8

d𝑉 (𝑆𝑡 , 𝑄𝑡+1)
d𝑆𝑡

=
d𝑢(·)
d𝐶𝑡+1

𝜕𝐶𝑡+1
𝜕𝑆𝑡

+ d𝑢(·)
d𝐶𝑡+1

𝜕𝐶𝑡+1
𝜕𝑆𝑡+1

d𝑆𝑡+1
d𝑆𝑡

+ 𝛽d𝑉 (·)
d𝑆𝑡+1

d𝑆𝑡+1
d𝑆𝑡

,

=
d𝑢(·)
d𝐶𝑡+1

𝜕𝐶𝑡+1
𝜕𝑆𝑡

+
[

d𝑢(·)
d𝐶𝑡+1

𝜕𝐶𝑡+1
𝜕𝑆𝑡+1

+ 𝛽d𝑉 (·)
d𝑆𝑡+1

]
︸                           ︷︷                           ︸
derivative of choice variable is 0

d𝑆𝑡+1
d𝑆𝑡

,

= 𝑢′ (𝐶𝑡+1)
d𝐶𝑡+1
d𝑆𝑡

+ 0 × 𝑔′ (𝑆𝑡 ),

= 𝑢′ (𝐶𝑡+1)(1 + 𝑟).

Step 5) Substituting the above result of applying the envelope theorem into the first-order condition, we get the Euler
equation which is the same as the Lagrange method:

𝛽𝑢′ (𝐶𝑡+1)
𝑢′ (𝐶𝑡 )

=
1

1 + 𝑟 .

From the perspective of thought, dynamic programming seems to transform the dynamic optimal problem into a static
optimal problem. The Bellman equation can be restated as:

𝑉 (𝑥) = max
𝑦
[𝑢[ 𝑓 (𝑥) − 𝑦] + 𝛽𝑉 (𝑦)] .

8The envelope theorem in dynamic settings operates in much the same way as in the static case. Let the state variable be 𝑥𝑡 , the control variable be
𝑦𝑡 , and suppose the state transition equation is given by 𝑥𝑡+1 = 𝑔 (𝑥𝑡 , 𝑦𝑡 ) . The objective function is max

∑∞
𝑡=0 𝛽

𝑡𝐹 (𝑥𝑡 , 𝑦𝑡 ) , which leads to the
corresponding Bellman equation: 𝑉 (𝑥𝑡 ) = max {𝐹 (𝑥𝑡 , 𝑦𝑡 ) + 𝛽𝑉 (𝑥𝑡+1 ) } . Substituting the state transition equation, which serves as a constraint, into
the Bellman equation yields 𝑉 (𝑥𝑡 ) = max{𝐹 (𝑥𝑡 , 𝑦𝑡 ) + 𝛽𝑉 [𝑔 (𝑥𝑡 , 𝑦𝑡 ) ] }. Given the optimal solution 𝑦◦𝑡 , the Bellman equation becomes 𝑉 (𝑥𝑡 ) =

𝐹 (𝑥𝑡 , 𝑦◦𝑡 ) + 𝛽𝑉 [𝑔 (𝑥𝑡 , 𝑦◦𝑡 ) ]. The envelope theorem implies
d𝑉 (𝑥𝑡 )

d𝑥𝑡︸    ︷︷    ︸
shadow price

=
𝜕𝐹 (𝑥𝑡 ,𝑦◦𝑡 )

𝜕𝑥𝑡
+ 𝜕𝐹 (𝑥𝑡 ,𝑦◦𝑡 )

𝜕𝑦◦𝑡

d𝑦◦𝑡
d𝑥𝑡 + 𝛽

d𝑉 (𝑥𝑡+1 )
d𝑥𝑡+1

[
𝜕𝑔 (𝑥𝑡 ,𝑦◦𝑡 )

𝜕𝑥𝑡
+ 𝜕𝑔 (𝑥𝑡 ,𝑦◦𝑡 )

𝜕𝑦◦𝑡

d𝑦◦𝑡
d𝑥𝑡

]
=

𝜕𝐹 (𝑥𝑡 ,𝑦◦𝑡 )
𝜕𝑥𝑡

+
[
𝜕𝐹 (𝑥𝑡 , 𝑦◦𝑡 )

𝜕𝑦◦𝑡
+ 𝛽 d𝑉 (𝑥𝑡+1 )

d𝑥𝑡+1
𝜕𝑔 (𝑥𝑡 , 𝑦◦𝑡 )

𝜕𝑦◦𝑡

]
︸                                                   ︷︷                                                   ︸

first-order condition=0

d𝑦◦𝑡
d𝑥𝑡 +𝛽

d𝑉 (𝑥𝑡+1 )
d𝑥𝑡+1

𝜕𝑔 (𝑥𝑡 ,𝑦◦𝑡 )
𝜕𝑥𝑡

=
𝜕𝐹 (𝑥𝑡 ,𝑦◦𝑡 )

𝜕𝑥𝑡
+𝛽 d𝑉 (𝑥𝑡+1 )

d𝑥𝑡+1
𝜕𝑔 (𝑥𝑡 ,𝑦◦𝑡 )

𝜕𝑥𝑡
. The envelope theorem indicates

that, under the optimal policy, the effect of a small change in a parameter (such as the initial state) on the value function depends only on its direct effect,
while the indirect effect via the control variable can be ignored. This is because, at the optimum, the control variable has already been adjusted to equate
marginal benefit and marginal cost, making the net effect of its variation zero.
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1.2 Dynamic Optimization Problem

In the above formula, 𝑥 is the state variable (i.e., 𝑆𝑡−1), 𝑦 is the endogenous state variable as the choice variable
(i.e., 𝑆𝑡 , and according to the budget constraint, the other choice variable (control variable) can be expressed as 𝑓 (𝑥) − 𝑦
(equivalent to (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 − 𝑆𝑡 ) in the above. According to the envelope theorem in the value function:

d𝑉 (𝑥)
d𝑥

= 𝑢′ [ 𝑓 (𝑥) − 𝑦] 𝑓 ′ (𝑥),
policy function
============⇒

𝑦=𝑔 (𝑥 )
𝑉 ′ (𝑥) = 𝑢′ [ 𝑓 (𝑥) − 𝑔(𝑥)] 𝑓 ′ (𝑥),

one period ahead
=======================================⇒

endogenous state variable becomes state variable
𝑉 ′ (𝑦) = 𝑢′ [ 𝑓 (𝑦) − 𝑔(𝑦)] 𝑓 ′ (𝑦).

The first-order necessary condition for optimizing the Bellman equation is:
d𝑉 (𝑥)

d𝑦
= 0 = −𝑢′ [ 𝑓 (𝑥) − 𝑦] + 𝛽𝑉 ′ (𝑦),

⇒ 𝑢′ [ 𝑓 (𝑥) − 𝑦] = 𝛽𝑉 ′ (𝑦),

⇒ 𝑢′ [ 𝑓 (𝑥) − 𝑦] = 𝛽

𝑉 ′ (𝑦)︷                      ︸︸                      ︷
𝑢′ [ 𝑓 (𝑦) − 𝑔(𝑦)] 𝑓 ′ (𝑦),

substitute into the policy function𝑦=𝑔 (𝑥 )
=================================⇒

𝑔 (𝑥 )≡arg max
𝑦
𝑢( 𝑓 (𝑥 )−𝑦)+𝛽𝑉 (𝑦)

𝑢′ [ 𝑓 (𝑥) − 𝑔(𝑥)] = 𝛽𝑢′ [ 𝑓 [𝑔(𝑥)] − 𝑔[𝑔(𝑥)] 𝑓 ′ [𝑔(𝑥)],

i.e.,
===⇒ 𝑢′ [ 𝑓 (𝑥𝑡−1) − 𝑔(𝑥𝑡−1)] = 𝛽𝑢′ [ 𝑓 [𝑔(𝑥𝑡−1)] − 𝑔[𝑔(𝑥𝑡−1)] 𝑓 ′ [𝑔(𝑥𝑡−1)],

𝑥𝑡=𝑔 (𝑥𝑡−1 )
=====================⇒
𝑥𝑡+1=𝑔 (𝑥𝑡 )=𝑔 (𝑔 (𝑥𝑡−1 ) )

𝑢′ [ 𝑓 (𝑥𝑡−1) − 𝑥𝑡 ] = 𝛽𝑢′ [ 𝑓 (𝑥𝑡 ) − 𝑥𝑡+1] 𝑓 ′ (𝑥𝑡 ),

⇒ 𝛽𝑢′ [ 𝑓 (𝑥𝑡 ) − 𝑥𝑡+1]
𝑢′ [ 𝑓 (𝑥𝑡−1) − 𝑥𝑡 ]

=
1

𝑓 ′ (𝑥𝑡 )
.

Omitting endowment income, the constraint can also be expressed as:

𝐶𝑡 +
1

1 + 𝑟 𝑆𝑡+1 = 𝑆𝑡 ,

That is, the savings in the next period are discounted to the current period.

Given the same initial and final conditions, the optimization problem is also:

max
{𝐶𝑡 }∞𝑡=0

𝑈0 ≡
∞∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡 ),

s.t. 𝑆𝑡+1 = (1 + 𝑟) (𝑆𝑡 − 𝐶𝑡 ).

Substituting the budget constraint (state transition equation) into the Bellman equation:

𝑉 (𝑆𝑡 ) = max
𝐶𝑡

{𝑢(𝐶𝑡 ) + 𝛽𝑉 [

𝑆𝑡+1︷              ︸︸              ︷
(1 + 𝑟) (𝑆𝑡 − 𝐶𝑡 )]}.

Given the optimal solution (policy function) 𝐶◦𝑡 = 𝐶◦𝑡 (𝑆𝑡 ), the Bellman equation is:

𝑉 (𝑆𝑡 ) = 𝑢[𝐶◦𝑡 (𝑆𝑡 )] + 𝛽𝑉{(1 + 𝑟) [𝑆𝑡 − 𝐶◦𝑡 (𝑆𝑡 )]}.

Applying the first-order condition to the envelope theorem also yields the consumption Euler equation:

𝑉 ′ (𝑆𝑡 ) = 𝑢′ (𝐶◦𝑡 )
d𝐶◦𝑡
d𝑆𝑡
+ 𝛽𝑉 ′ (𝑆𝑡+1)(1 + 𝑟)

(
1 −

d𝐶◦𝑡
d𝑆𝑡

)
,

=
[
𝑢′ (𝐶◦𝑡 ) − 𝛽(1 + 𝑟)𝑉 ′ (𝑆𝑡+1)

]︸                                ︷︷                                ︸
F.O.C.=0

d𝐶◦𝑡
d𝑆𝑡
+ 𝛽(1 + 𝑟)𝑉 ′ (𝑆𝑡+1),

⇒ 𝑉 ′ (𝑆𝑡 ) = 𝛽(1 + 𝑟)𝑉 ′ (𝑆𝑡+1),
⇒ 𝑢′ (𝐶𝑡 ) = 𝛽(1 + 𝑟)𝑢′ (𝐶𝑡+1).
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1.2 Dynamic Optimization Problem

Example14. Infinite-horizon consumption decisions in a production economy

A) Economy with discentralized competition

a. Representative manufacturers

Given the real wage and the real interest rate, the firm chooses capital and labor to optimize profit:

max
𝐾𝑡

𝐹 (𝐾𝑡 , 𝐿𝑡 , 𝐴𝑡 ) − (𝑟 + 𝛿)𝐾𝑡 −𝑊𝐿𝑡 .

This is essentially a single-variable unconstrained static optimization problem, and the first-order necessary conditions
are:

𝐹𝐾 (𝐾𝑡 , 𝐿𝑡 , 𝐴𝑡 ) = 𝑟 + 𝛿 ≡ 𝑅.

Depreciation rate 𝛿 ∈ [0, 1]: 𝛿 = 0 means no depreciation at all, 𝛿 = 1 means full depreciation.

b. Representative households

max
{𝐶𝑡 ,𝐾𝑡+1 }∞𝑡=0

∞∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡 ),

s.t. 𝐶𝑡 + 𝐾𝑡+1 + (1 − 𝛿)𝐾𝑡︸               ︷︷               ︸
𝐼𝑡=𝑆𝑡

= 𝑊𝐿𝑡 + 𝑅𝐾𝑡︸        ︷︷        ︸
𝑌𝑡

+ 𝐷𝑡︸︷︷︸
0

,

given 𝐾0 = 0 = lim
𝑡→∞

𝐾𝑡+1.

𝐷𝑡 can be regarded as the asset income of the household, which comes from the economic profit of the enterprise
in which the household has equity. Under perfect competition, the economic profit of the enterprise is 0, so 𝐷𝑡 = 0. If
necessary, government transfer payments or lump-sum taxes can also be added to balance the budget constraint.

B) Economy with centralized arrangement

In an endowment economy, it is assumed that there is an income that ”falls from the sky” in each period, and the
interest earned on savings is used as the income of inter-period allocation of consumption. This example considers the
conversion of savings into investment. If capital is fully depreciated (𝛿 = 1) , investment is all the newly added capital,
which is used for production, and the output is also income. In addition to capital input, output should also have labor
input and technology input. For simplicity, labor and technology are assumed to be exogenous and constant. Therefore,
in this example, the main markets here are a capital market and a product market, and supply and demand are equal when
the market is cleared. Therefore:

𝐶𝑡 + 𝑆𝑡 = 𝑄𝑑𝑡 ,
𝑄𝑠𝑡 = 𝐹 (𝐾𝑑𝑡 , 𝐿𝑡 , 𝐴𝑡 ),

𝐾𝑠,𝑡+1 = 𝐼𝑡 ,

 behavioral equations equilibrium conditions


𝐼𝑡 = 𝑆𝑡 ,

𝐾𝑑𝑡 = 𝐾𝑠𝑡 = 𝐾𝑡 ,

𝑄𝑑𝑡 = 𝑄𝑠𝑡 = 𝑄𝑡 .

Combining the above behavioral equations and equilibrium conditions, we can obtain:

𝐶𝑡 + 𝐾𝑡+1 = 𝐹 (𝐾𝑡 , 𝐿𝑡 , 𝐴𝑡 ) = (1 + 𝑟)𝐾𝑡 +𝑊𝐿𝑡 .

The second equation above is from a decentralized economy. Compare the budget constraint in the endowment
economy above with the budget constraint in the production economy here:{

𝐶𝑡 + 𝑆𝑡 = (1 + 𝑟)𝑆𝑡−1 +𝑄𝑡 ;
𝐶𝑡 + 𝐾𝑡+1 = (1 + 𝑟)𝐾𝑡 +𝑊𝐿𝑡 .

In the endowment economy mentioned above, the assumption 𝛿 = 1 is also implied; the two adjacent periods 𝐾𝑡+1
and 𝐾𝑡 can also be written as 𝐾𝑡 and 𝐾𝑡−1 , so the production function is 𝑌 = 𝐹 (𝐾𝑡−1, 𝐿𝑡 ); the endowment income 𝑄𝑡 and
labor𝑊𝐿𝑡 of the two models are both exogenous. In contrast, the two budget constraints can be highly consistent in form
and are basically the same in essence.
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1.2 Dynamic Optimization Problem

This leads to the following utility optimization problem with budget constraints:

max
{𝐶𝑡 }∞𝑡=0

∞∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡 ),

s.t. 𝐶𝑡 + 𝐾𝑡+1 = 𝐹 (𝐾𝑡 , 𝐿𝑡 , 𝐴𝑡 ),
given 𝐾0 = 0 = lim

𝑡→∞
𝐾𝑡+1.

For simplicity, the exogenous variables production technology and labor are set as constants and further standardized
to 1, that is, 𝐴𝑡 = 𝐴 = 1 = 𝐿 = 𝐿𝑡 . Solving 𝐶𝑡 from the budget constraint and substituting it into the objective function,
we can write the Bellman equation:

𝑉 (𝐾0) ≡ max
{𝐾𝑡+1 }∞𝑡=0

∞∑
𝑡=0

𝛽𝑡𝑢[𝐹 (𝐾𝑡 ) − 𝐾𝑡+1],

⇒ 𝑉 (𝐾0) = max
𝐾1
{𝑢[ 𝑓 (𝐾0) − 𝐾1] + 𝛽𝑉 (𝐾1)},

⇒ 𝑉 (𝐾𝑡 ) = max
𝐾𝑡+1
{𝑢[𝐹 (𝐾𝑡 ) − 𝐾𝑡+1] + 𝛽𝑉 (𝐾𝑡+1)},

⇒ 𝑉 (𝐾) = max
𝑋
{𝑢[𝐹 (𝐾) − 𝑋] + 𝛽𝑉 (𝑋)},

The last but one Bellman equation mentioned above is an extension from the beginning of period 0 to the beginning of any
period 𝑡 ; the last Bellman equation expresses that this recursive structure is independent of the specific period, and it is
always given the previous material capital 𝐾 (state variable) to select the optimal material capital 𝑋 for the next period, so
𝑋 is the control variable.

The first-order condition for optimization is:
d𝑢[𝐹 (𝐾) − 𝑋]

d𝑋
+ 𝛽d𝑉 (𝑋)

d𝑋
= 0,

⇒ d𝑢[𝐹 (𝐾) − 𝑋]
d[𝐹 (𝐾) − 𝑋]

d[𝐹 (𝐾) − 𝑋]
d𝑋

+ 𝛽d𝑉 (𝑋)
d𝑋

= 0,

⇒ −𝑢′ [𝐹 (𝐾) − 𝑋] + 𝛽d𝑉 (𝑋)
d𝑋

= 0,

⇒ 𝑢′ [𝐹 (𝐾) − 𝑋] = 𝛽d𝑉 (𝑋)
d𝑋

vs. 𝑢′ (𝐶𝑡 ) = 𝜆𝑡 .

If𝑉 (𝑋) is known, then d𝑉 (𝑋)/d𝑋 can be known, and from this we can get the policy function (or decision rule, feed-
back rule) 𝑋 = 𝑓 (𝐾). In addition, after comparison, it is easy to know the Lagrange multiplier 𝜆𝑡 ≡ 𝛽(d𝑉 (𝐾𝑡+1)/d𝐾𝑡+1),
which is the shadow price of newly produced tangible capital (or investment expenditure), that is, the present value of the
lifetime utility increased by an additional unit of tangible capital.

Substituting it into the above formula:

𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)] = 𝛽d𝑉 [ 𝑓 (𝐾)]
d 𝑓 (𝐾) .

Substituting it into the Bellman equation, we can deduce according to the envelope theorem:

𝑉 (𝐾) = 𝑢[𝐹 (𝐾) − 𝑓 (𝐾)] + 𝛽𝑉 [ 𝑓 (𝐾)],

⇒ d𝑉 (𝐾)
d𝐾

=
𝜕

𝜕𝐾
{𝑢[𝐹 (𝐾) − 𝑓 (𝐾)] + 𝛽𝑉 [ 𝑓 (𝐾)]} ,

= 𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)] [𝐹′ (𝐾) − 𝑓 ′ (𝐾)] + 𝛽d𝑉 [ 𝑓 (𝐾)]
d 𝑓 (𝐾) 𝑓 ′ (𝐾),

= 𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)]𝐹′ (𝐾) − 𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)] 𝑓 ′ (𝐾) + 𝛽d𝑉 [ 𝑓 (𝐾)]
d 𝑓 (𝐾) 𝑓 ′ (𝐾),

= 𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)]𝐹′ (𝐾) − 𝛽d𝑉 [ 𝑓 (𝐾)]
d 𝑓 (𝐾) 𝑓 ′ (𝐾) + 𝛽d𝑉 [ 𝑓 (𝐾)]

d 𝑓 (𝐾) 𝑓 ′ (𝐾),

= 𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)]𝐹′ (𝐾),
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1.2 Dynamic Optimization Problem

⇒ d𝑉 [ 𝑓 (𝐾)]
d 𝑓 (𝐾) = 𝑢′ {𝐹 [ 𝑓 (𝐾)] − 𝑓 [ 𝑓 (𝐾)]} 𝐹′ [ 𝑓 (𝐾)],

⇒ 𝑢′ [𝐹 (𝐾) − 𝑓 (𝐾)] = 𝛽𝑢′ {𝐹 [ 𝑓 (𝐾)] − 𝑓 [ 𝑓 (𝐾)]} 𝐹′ [ 𝑓 (𝐾)],
𝐾𝑡+1= 𝑓 (𝐾𝑡 )

==============⇒
𝐾𝑡+2= 𝑓 ( 𝑓 (𝐾𝑡 ) )

𝑢′ [𝐹 (𝐾𝑡 ) − 𝐾𝑡+1︸           ︷︷           ︸
𝐶𝑡

] = 𝛽𝑢′ [𝐹 (𝐾𝑡+1) − 𝐾𝑡+2︸             ︷︷             ︸
𝐶𝑡+1

]𝐹′ (𝐾𝑡+1).

This is also the Euler equation after substituting the budget constraint. It is a second-order difference equation for
tangible capital; the initial condition is a given non-negative capital stock (i.e., 𝐾0 ≥ 0), and the cross-sectional condition
is lim
𝑡→∞

𝛽𝑡𝑢′ (𝐶𝑡 )𝐾𝑡+1 = 0.

It can be seen that whether solving the Lagrangian function to obtain the Euler equation or solving the value function
through the Bellman equation, the policy function can be obtained. If the objective function is not too complicated, the
former is relatively convenient and fast to solve; especially when the objective function has complete information rational
expectations or incomplete information rational expectations (see Chapter 5), the latter is more robust and reliable.

Linear quadratic dynamic programming is another form of dynamic programming, where the objective function
is quadratic and the constraints are linear.

Question 1: How to get the quadratic objective function? 9

Starting from the two-vector Taylor expansion,

𝐹 (x𝑡 , y𝑡 ) ≈ 𝐹 (x� , y�) +

gradient vector︷                                 ︸︸                                 ︷[
𝐹x (x� , y�)′ 𝐹y (x� , y�)′

] [
x𝑡 − x�

y𝑡 − y�

]
+

[
(x𝑡 − x�)′ (y𝑡 − y�)′

]
1
2 Hessian matrix︷                            ︸︸                            ︷

𝐹xx (x� ,y� )
2

𝐹xy (x� ,y� )
2

𝐹yx (x� ,y� )
2

𝐹yy (x� ,y� )
2


[
x𝑡 − x�

y𝑡 − y�

]
,

= 𝐹 (𝑥�1 , 𝑥
�
2 , · · · , 𝑥

�
𝑘 , 𝑦
�
1 , 𝑦
�
2 , · · · , 𝑦

�
𝑙 )

+ 𝐹𝑥1 (x� , y�) (𝑥1𝑡 − 𝑥�1 ) + 𝐹𝑥2 (x� , y�)(𝑥2𝑡 − 𝑥�2 ) + · · · + 𝐹𝑦1 (x� , y�) (𝑦1𝑡 − 𝑦�1 ) + 𝐹𝑦2 (x� , y�)(𝑦2𝑡 − 𝑦�2 ) + · · · ,

+ 1
2

[
𝐹𝑥1𝑥1 (x� , y�)(𝑥1𝑡 − 𝑥�1 )

2 + 𝐹𝑥1𝑥2 (x� , y�)(𝑥1𝑡 − 𝑥�1 ) (𝑥2𝑡 − 𝑥�2 ) + · · · + 𝐹𝑥1𝑦1 (x� , y�) (𝑥1𝑡 − 𝑥�1 )(𝑦1𝑡 − 𝑦�1 ) + · · ·

+ 𝐹𝑦1𝑦1 (x� , y�)(𝑦1𝑡 − 𝑦�1 )
2 + 𝐹𝑦1𝑦2 (x� , y�) (𝑦1𝑡 − 𝑦�1 ) (𝑦2𝑡 − 𝑦�2 ) + · · · + 𝐹𝑦1𝑥1 (x� , y�) (𝑦1𝑡 − 𝑦�2 ) (𝑥1𝑡 − 𝑥�) + · · ·

]
,

= 𝐹 (x� , y�) − 𝐹x (x� , y�)′x� − 𝐹y (x� , y�)′y�

+ 1
2

x�
′
𝐹xx (x� , y�)x� +

1
2

x�
′
𝐹xy (x� , y�)y� +

1
2

y�
′
𝐹yx (x� , y�)x� +

1
2

y�
′
𝐹yy (x� , y�)y�

+ (·)x𝑡 + (·)y𝑡 + x′𝑡 (·)x𝑡 + x′𝑡 (·)y𝑡 + y′𝑡 (·)y𝑡 ,

= 𝐹 (x� , y�) − 𝐹x (x� , y�)′x� − 𝐹y (x� , y�)′y� +
1
2

x�
′
𝐹xx (x� , y�)x� + x�

′
𝐹xy (x� , y�)y� +

1
2

y�
′
𝐹yy (x� , y�)y�

+ (·)x𝑡 + (·)y𝑡 + x′𝑡 (·)x𝑡 + x′𝑡 (·)y𝑡 + y′𝑡 (·)y𝑡 .

The quadratic term of Taylor expansion is a quadratic form. To include the steady-state point and the linear term in
the quadratic form, we need to redefine the vector z𝑡 = [1 x𝑡 y𝑡 ]′ and its steady state z� = [1 x� y�]′, the equivalence
of the two is:

𝐹 ( x𝑡︸︷︷︸
𝑘×𝑘

, y𝑡︸︷︷︸
𝑙×𝑙

) ≈
[
1 x𝑡 y𝑡

]
︸           ︷︷           ︸

z′𝑡


𝑑11 d12 d13
d21 d22 d23
d31 d32 d33

︸                  ︷︷                  ︸
D


1
x𝑡
y𝑡

︸︷︷︸
z𝑡

= 𝑑11︸︷︷︸
1×1

+(d12 + d′21 )x𝑡 + (d13 + d′31 )y𝑡 + x′𝑡 d22︸︷︷︸
𝑘×𝑘

x𝑡 + x′𝑡 (d23 + d′32 )y𝑡 + y′𝑡 d33︸︷︷︸
𝑙×𝑙

y𝑡 .

The coefficient matrix is   defined as:

𝑑11 = 𝐹 (x� , y�) − x�
′
𝐹𝑥 (x� , y�) − y�

′
𝐹𝑦 (x� , y�) +

x�′𝐹𝑥𝑥 (x� , y�)x�
2

+ x�
′
𝐹𝑥𝑦 (x� , y�)y� +

y�′𝐹𝑦𝑦 (x� , y�)y�

2
,

𝑑22 =
𝐹𝑥𝑥 (x� , y�)

2
,

9[21] expressed the objective function in a quadratic form,[25] provided a brief introduction in the book, and this section draws inspiration from it.
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1.2 Dynamic Optimization Problem

𝑑33 =
𝐹𝑦𝑦 (x� , y�)

2
,

𝑑12 = 𝑑′21 =
𝐹𝑥 (x� , y�)′ − x�′𝐹𝑥𝑥 (x� , y�) − y�′𝐹𝑦𝑥 (x� , y�)

2
,

𝑑13 = 𝑑′31 =
𝐹𝑦 (x� , y�)′ − x�′𝐹𝑥𝑦 (x� , y�) − y�′𝐹𝑦𝑦 (x� , y�)

2
,

𝑑23 = 𝑑′32 =
𝐹𝑥𝑦 (x� , y�)

2
.

The objective function of infinite-period optimization can therefore be expressed in quadratic form.

Question 2: How to obtain the optimal constraints of linear quadratic form?
Let y𝑡 be the choice variable (including control variables and endogenous state variables), incorporate 1 into the state

vector x𝑡 to form an augmented state vector x1
𝑡 (one dimension added), redefine z𝑡 ≡ [x1

𝑡 y𝑡 ]′, and combine the linear
constraints to obtain the linear quadratic form:

max
y𝑡

∞∑
𝑡=0

𝛽𝑡
{
𝐹 (x𝑡 , y𝑡 ) = z′𝑡Dz𝑡

}
⇔ max

y𝑡

∞∑
𝑡=0

𝛽𝑡

{
z′𝑡Dz𝑡 =

[
x′𝑡 y′𝑡

] [
R W′

W Q

] [
x′𝑡
y′𝑡

]}
⇔ max

y𝑡

∞∑
𝑡=0

𝛽𝑡 [x1′
𝑡 Rx1

𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx1
𝑡 ],

s.t. x𝑡+1 = 𝐺 (x𝑡 , y𝑡 ) = Ax𝑡 + By𝑡 ⇔
[

1
x𝑡+1

]
︸ ︷︷ ︸

x1
𝑡+1

=

[
1 0
0 A

]
︸   ︷︷   ︸
A

[
1
x𝑡

]
+

[
0 0
0 B

]
︸   ︷︷   ︸
B

y𝑡 ⇔ x1
𝑡+1 = Ax1

𝑡 + By𝑡 .

For the sake of convenience, we will also write x1
𝑡 as x𝑡 , A as A, and B as B, but the reader should now know that

if x𝑡 is an augmented vector containing element 1, then all elements in the first row of matrix A are 0 except for the first
column, and all elements in the first row of B are 0, and the Hessian matrix is   adjusted accordingly. The linear quadratic
form is restated as:

max
y𝑡

∞∑
𝑡=0

𝛽𝑡 [x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 ],

s.t. x𝑡+1︸︷︷︸
(𝑘+1)×1

= A︸︷︷︸
(𝑘+1)×(𝑘+1)

x𝑡︸︷︷︸
(𝑘+1)×1

+ B︸︷︷︸
(𝑘+1)×𝑙

y𝑡︸︷︷︸
𝑙×1

Bellman equation:

𝑉 (x𝑡 ) = max
y𝑡
[x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽𝑉 (x𝑡+1)],

= max
y𝑡
[x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽𝑉 (Ax𝑡 + By𝑡 )] .

Question 3: How to get the solution of linear quadratic optimization?

Make the following conjecture: 

value function︷            ︸︸            ︷
𝑉 (x𝑡 ) = x′𝑡Px𝑡 ;

⇒ y𝑡 = −Fx𝑡︸      ︷︷      ︸
policy function

.

Why do we have this conjecture about the value function? Recall that the value function in the static model is always
a function of exogenous variables (including parameters), and the value function in the dynamic model is always a function
of exogenous variables (including state variables).

Substitute the conjectured value function into the Bellman equation:

𝑉 (x𝑡 ) = max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽[(Ax𝑡 + By𝑡 )′P(Ax𝑡 + By𝑡 )]},

= max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽{[(Ax𝑡 )′ + (By𝑡 )′]P(Ax𝑡 + By𝑡 )},
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1.2 Dynamic Optimization Problem

= max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′Wx𝑡 + 𝛽[(x′𝑡A′ + y′𝑡B′)P(Ax𝑡 + By𝑡 )]},

= max
y𝑡
{x′𝑡Rx + y′Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽[(x′𝑡A′P + y′𝑡B′P)(Ax𝑡 + By𝑡 )]},

= max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽[x′𝑡A′PAx𝑡 + x′𝑡A′PBy𝑡 + y′𝑡B′PAx𝑡 + y′𝑡B′PBy𝑡 ]},

= max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Hx𝑡 + 𝛽[x′𝑡A′PAx𝑡 + x′𝑡A′PBy𝑡 + (y′𝑡B′PAx𝑡 )′ + y′𝑡B′PBy𝑡 ]},

= max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽[x′𝑡A′PAx𝑡 + x′𝑡A′PBy𝑡 + x′A′PBy𝑡 + y′𝑡B′PBy𝑡 ]},

⇒ 𝑉 (x𝑡 ) = max
y𝑡
{x′𝑡Rx𝑡 + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽[x′𝑡A′PAx𝑡 + 2x′𝑡A′PBy𝑡 + y′𝑡B′PBy𝑡 ]}.

⇒ 𝜕𝑉 (x𝑡 )
𝜕y𝑡

= (Q +Q′)y𝑡 + 2Wx𝑡 + 𝛽{2(x′A′PB)′ + [(B′PB) + (B′PB)′]y𝑡 },

= (Q +Q)y𝑡 + 2Wx𝑡 + 𝛽[2B′P′Ax𝑡 + (B′PB + B′PB)y𝑡 ], ← Q is symmetric

= 2Qy𝑡 + 2Wx𝑡 + 2𝛽(B′P′Ax𝑡 + B′PBy𝑡 ),
⇒ 0 = 2Qy + 2Wx𝑡 + 2𝛽(B′PAx𝑡 + B′PBy𝑡 ), ← P is symmetric

⇒ 0 = Qy𝑡 +Wx𝑡 + 𝛽B′PAx𝑡 + 𝛽B′PBy𝑡 ,

⇒ 0 = (Q + 𝛽B′PB)y𝑡 + (W + 𝛽B′PA)x𝑡 ,
⇒ y𝑡 = − (Q + 𝛽B′PB)−1 (W + 𝛽B′PA)︸                                 ︷︷                                 ︸

F

x𝑡 .

Substitute the policy function derived above into the Bellman equation to determine the coefficient matrix P:

𝑉 (x𝑡 ) = x′𝑡Rx + y′𝑡Qy𝑡 + 2y′𝑡Wx𝑡 + 𝛽
(
x′𝑡A′PAx𝑡 + 2x′𝑡A′PBy𝑡 + y′𝑡B′PBy𝑡

)
,

= x′𝑡Rx𝑡 + (−Fx𝑡 )′Q (−Fx𝑡 ) + 2 (−Fx𝑡 )′Wx𝑡 + 𝛽
[
x′𝑡A′PAx𝑡 + 2x′𝑡A′PB (−Fx𝑡 ) + (−Fx𝑡 )′ B′PB (−Fx𝑡 )

]
,

= x′𝑡Rx𝑡 + x′𝑡F′QFx𝑡 − 2x′F′Wx𝑡 + 𝛽
(
x′𝑡A′PAx𝑡 − 2x′A′PBFx𝑡 + x′𝑡F′B′PBFx𝑡

)
,

= x′𝑡Rx𝑡 + x′𝑡
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

] ′
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

− 2x′𝑡
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

] ′
Wx𝑡

+ 𝛽
(
x′𝑡A′PAx𝑡 − 2x′𝑡A′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

+ x′𝑡
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

] ′
B′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

)
,

= x′𝑡Rx𝑡 + x′𝑡
{
(W + 𝛽B′PA)′

[
(Q + 𝛽B′PB)−1

] ′}
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

− 2x′𝑡
{
(W + 𝛽B′PA)′

[
(Q + 𝛽B′PB)−1

] ′}
Wx𝑡

+ 𝛽
(
x′𝑡A′PAx𝑡 − 2x′𝑡A′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

+ x′𝑡
{
(W + 𝛽B′PA)′

[
(Q + 𝛽B′PB)−1

] ′}
B′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

)
,

= x′𝑡Rx𝑡 + x′𝑡
[
(W + 𝛽B′PA)′ (Q + 𝛽B′PB)−1

]
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

− 2x′𝑡
[
(W + 𝛽B′PA)′ (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽
(
x′𝑡A′PAx𝑡 − 2x′𝑡A′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

+ x′𝑡
[
(W + 𝛽B′PA)′ (Q + 𝛽B′PB)−1

]
B′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

)
,

= x′𝑡Rx𝑡 + x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

− 2x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽
(
x′𝑡A′PAx𝑡 − 2x′𝑡A′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡
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1.2 Dynamic Optimization Problem

+ x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
B′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

)
,

= x′𝑡Rx𝑡 + x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

− 2x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽x′𝑡A′PAx𝑡 − 2𝛽x′𝑡A′PB
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

+ 𝛽x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
B′PB

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

+ 𝛽x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
(B′PB)

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

− 2x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽x′𝑡A′PAx𝑡 − 2𝛽x′𝑡 (A′PB)
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Q

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

+ x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
(𝛽B′PB)

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

− 2x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽x′𝑡A′PAx𝑡 − 2𝛽x′𝑡 (A′PB)
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
(Q + 𝛽B′PB)

[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡

− 2x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽x′𝑡A′PAx𝑡 − 2𝛽x′𝑡 (A′PB)
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
(Q + 𝛽B′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡

− 2x′𝑡
[
(W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1

]
Wx𝑡

+ 𝛽x′𝑡A′PAx𝑡 − 2𝛽x′𝑡 (A′PB)
[
(Q + 𝛽B′PB)−1 (W + 𝛽B′PA)

]
x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡
− 2x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 Wx𝑡
+ 𝛽x′𝑡A′PAx𝑡 − 2𝛽x′𝑡 (A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡
− 2x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 Wx𝑡 − 2𝛽x′𝑡 (A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 ,
+ 𝛽x′𝑡A′PAx𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 + 𝛽x′𝑡A′PAx𝑡

− 2
[
x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 Wx𝑡

] ′
− 2𝛽x′𝑡 (A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 + 𝛽x′𝑡A′PAx𝑡
− 2x′𝑡W′ (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 − 2𝛽x′𝑡 (A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 + 𝛽x′𝑡A′PAx𝑡
− 2x′𝑡W′ (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 − 2x′𝑡 (𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 ,

= x′𝑡Rx𝑡 + x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 + 𝛽x′𝑡A′PAx𝑡
− 2x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 ,

= x′𝑡Rx𝑡 − x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 + 𝛽x′𝑡A′PAx𝑡 ,

⇒ x′𝑡Px𝑡 = x′𝑡Rx𝑡 − x′𝑡 (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) x𝑡 + 𝛽x′𝑡A′PAx𝑡 ,
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1.2 Dynamic Optimization Problem

⇒ P = R − (W′ + 𝛽A′PB) (Q + 𝛽B′PB)−1 (W + 𝛽B′PA) + 𝛽A′PA.

This gives us the Riccati equations, which can be solved numerically by iteration for the matrix P (a function of
the matrixR, Q, A, and B) 10This understanding of linear quadratic deterministic dynamic programming is helpful in
understanding linear quadratic stochastic dynamic programming, which is further discussed in Chapter 5 of this book.

1.2.2 Continuous time

The static part of the previous section focused on the optimization problems of equality constraints and inequality
constraints between different choice variables. The discrete-time part of the previous subsection basically dealt with
the constraints on the same choice variable at different times, but the focus was on the dynamic optimization problem
from two periods to multiple periods. In continuous time problems, there will naturally be constraints on the same choice
variable at different times and between different choice variables, but the continuous time part will also briefly introduce
the dynamic optimization with constraints between different state variables that have not yet been mentioned.

This leads to a conceptual question: what are state variables? [25, p.51] defined that at a certain time 𝑡(decision
period), state variables refer to those variables whose values   have been determined by past decision actions or by natural
motion processes. [49, p.55] defined it more broadly, arguing that all variables that can determine control variables other
than parameters are state variables. In other words, control variables should be expressible as functions of state variables.

1.2.2.1 No constraints between state variables

I. Single state variable

When there is a single state variable, there may be a single control variable or multiple control variables.

i. Single control variable

A single state variable and a single control variable form a constraint on the time axis.

Example 15. Continuous-time consumption decisions in an endowment economy

This example is the continuous time version of Example 12. The objective function and constraints of the optimization
problem are rewritten into continuous time versions:

max
{𝐶𝑡 }𝑇𝑡=0

𝑈0 ≡
𝑇∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡 ),

s.t. 𝐶𝑡 + 𝑆𝑡 − 𝑆𝑡−1 = 𝑟𝑆𝑡−1 +𝑄𝑡 ,
given 𝑆−1 = 0 = 𝑆𝑇 .


discrete time vs. continuous time


max
𝐶 (𝑡 )

𝑈 ≡ 𝑈 (0) =
ˆ 𝑇

𝑡=0
𝑒−𝜌𝑡𝑢[𝐶 (𝑡)]d𝑡,

s.t. 𝐶 (𝑡) + ¤𝑆(𝑡) = 𝑟𝑆(𝑡) +𝑄(𝑡),
given 𝑆(0) = 0 = 𝑆(𝑇).

A few notes:

(1) In discrete time, the summation operator
∑

is used for summation, while in continuous time, the integral symbol´
(and the differential symbol d𝑡) are used for summation.

(2) For discrete multi-period dynamic optimization problems, the discount factor 𝛽 ≡ 1/(1 + 𝜌) is used, where 𝜌 is
the subjective discount rate, which has the same meaning as 𝜌 used in continuous time problems.

(3) Why is the discount factor 𝑒−𝜌𝑡used in continuous time? The definition of 𝑒 is related to the calculation of
continuous compound interest.

10The above derivation uses high-dimensional differential rules 𝜕A′x𝑡
𝜕x𝑡 = A; 𝜕x′𝑡Ax𝑡

𝜕x𝑡 = (A + A′ )x𝑡 ,
𝜕2x′𝑡Ax𝑡
𝜕x𝑡𝜕x′𝑡

= (A + A′ ) , 𝜕x′𝑡Ax𝑡
𝜕A = x′𝑡x𝑡 ;

𝜕y′𝑡Bx𝑡
𝜕x𝑡 =

B′y𝑡 ,
𝜕y′𝑡Bx𝑡
𝜕y𝑡 = Bx𝑡 ,

𝜕y′𝑡Bx𝑡
𝜕B = y′𝑡x𝑡 �[22, 1st ed., solution to exercise 4.1] provided Matlab code olrp.m for solving Riccati equation�[25, p.155, eq.7.5]

also presented the use of numerical methods to approximate and solve the undetermined coefficient matrix through the following construction P𝑘+1 =
R − (W′ + 𝛽A′P𝑘B) (Q + 𝛽B′P𝑘B)−1 (W + 𝛽B′P𝑘A) + 𝛽A′P𝑘A, where lim

𝑘→∞
P𝑘 = P, P0 is given.
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1.2 Dynamic Optimization Problem

Step 1, assuming that the initial principal is 1 unit of currency, the interest rate is 100% per period, and the interest
is calculated once per period. After one period, the sum of principal and interest is: 𝑣 = 1 + 100% = 1 + 1/1 = 2 units;
if the interest is changed to half-period, the half-period interest rate is 50% , and the sum of principal and interest after
half a period is used as the principal for the second half of the period, and the interest is calculated twice in one period,
then the sum of principal and interest is: 𝑣 = (1 + 50%)(1 + 50%) = (1 + 1/2)2. Similarly, if the interest is calculated 𝑚
in one period, the interest rate is 1/𝑚, and the sum of principal and interest after one period is: 𝑣 = (1 + 1/𝑚)𝑚. When
𝑚 approaches infinity, the sum of principal and interest after one period is: 𝑣 = lim

𝑚→∞
[1 + 1/𝑚]𝑚 ≡ 𝑒 = 𝑒1 = 𝑒𝑥 |𝑥=1 =

[1 + 𝑥 + (1/2!)𝑥2 + (1/3!)𝑥3 + · · · ]𝑥=1 = 1 + 1 + 1/(2!) + 1/(3!) + · · · ≈ 2.71828.

Step 2: Continuously calculate compound interest. After the first period, 1 unit of principal is 𝑒 units of currency.
Let it be the new principal for the next period. After the second period, each unit of the 𝑒 units will become 𝑒 units of
currency again, so the total is 𝑣 = 𝑒 × 𝑒 = 𝑒2. By analogy, the sum of principal and interest at the end of the 𝑡-th period is
𝑣 = 𝑒𝑡 units.

Step 3: If the period interest rate per period is not 100% but an arbitrary nominal interest rate 𝑖, then the sum of
principal and interest after the first period is 𝑣 = lim

𝑚→∞
(1 + 𝑖/𝑚)𝑚 = lim

𝑚→∞
[(1 + 𝑖/𝑚)𝑚/𝑖]𝑖 = 𝑒𝑖 , and the sum of principal

and interest calculated by compound interest after the 𝑡-th period is𝑣 = 𝑒𝑖𝑡 .

Step 4: If the initial principal is not 1 but an arbitrary 𝑑, then the sum of principal and interest calculated by compound
interest after the 𝑡-th period is 𝑣 = 𝑑𝑒𝑖𝑡 .

Step 5: If it is known that the sum of principal and interest calculated based on continuous compound interest after
the 𝑡-th period is 𝑣 = 𝑑𝑒𝑖𝑡 , then the initial principal is 𝑑 = 𝑣𝑒−𝑖𝑡 .

Step 6: The nominal interest rate 𝑖 is replaced by the subjective discount rate 𝜌 and the current utility of future
consumption is discounted according to 𝑒−𝜌𝑡 .

Step 7: for discrete time, the interest rate per period is 𝑖, the sum of principal and interest after the first period is
𝑣 = 𝑑 (1 + 𝑖), after the second period is 𝑣 = 𝑑 (1 + 𝑖)2 and after the 𝑡-th period is 𝑣 = 𝑑 (1 + 𝑖)𝑡 . If it is known that the
sum of principal and interest calculated according to discrete compound interest after the 𝑡-th period is 𝑣 = 𝑑 (1 + 𝑖)𝑡 , then
the initial principal is 𝑑 = 𝑣(1 + 𝑖)−𝑡 . When the nominal interest rate is replaced by the subjective discount rate 𝜌, the
present-value utility of future consumption is discounted according to (1 + 𝜌)−𝑡 , that is, 𝛽𝑡 .

Step 8: The discount factor of discrete time and the discount factor of continuous time can establish an equivalent
relationship:

𝛽𝑡 =

(
1

1 + 𝜌

) 𝑡
︸           ︷︷           ︸

discrete time

vs. 𝑒−𝜌𝑡 = (𝑒𝜌)−𝑡 = [(𝑒𝜌)−1]𝑡 = [(1 + 𝜌)−1]𝑡 =
(

1
1 + 𝜌

) 𝑡
︸                                                                  ︷︷                                                                  ︸

continuous time

.

i) From Lagrangian function to Hamiltonian function

If 𝑆(𝑡) is continuously differentiable, the variational method can be used; if 𝑆(𝑡) has a sharp inflection point, optimal
control can be used.

(1) Predecessor: classical variation

By solving the budget constraint, we choose the variable 𝐶𝑡 and substitute it into the objective function to obtain a
most basic continuous-time dynamic optimization problem that only contains state variables and their changes:

max
𝐶 (𝑡 )

𝑈 =
ˆ 𝑇

𝑡=0
𝑒−𝜌𝑡𝑢[𝐶 (𝑡)]d𝑡,

s.t. 𝐶 (𝑡) + ¤𝑆(𝑡) = 𝑟𝑆(𝑡) +𝑄(𝑡),
given 𝑆(0) = 0 = 𝑆(𝑇).


equality constraint

====================⇒
converted to no constraint


max
𝑆 (𝑡 )

𝑈 =
ˆ 𝑇

𝑡=0
𝑒−𝜌𝑡𝑢[𝑟𝑆(𝑡) +𝑄(𝑡) − ¤𝑆(𝑡)]d𝑡,

given 𝑆(0) = 0 = 𝑆(𝑇).

In addition to the exogenous variables 𝑟 and𝑄(𝑡), the main elements of this basic problem of continuous-time dynamic
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1.2 Dynamic Optimization Problem

optimization are time 𝑡, state variables 𝑆(𝑡) and their time derivatives ¤𝑆(𝑡). The objective functional in general form is:

max
𝑆 (𝑡 )

𝑈 [𝑆(𝑡)] =
ˆ 𝑇

𝑡=0
𝑒−𝜌𝑡𝑈 [𝑡, 𝑆(𝑡), ¤𝑆(𝑡)]d𝑡,

given 𝑆(0) = 0 = 𝑆(𝑇).


omit discounting for now
====================⇒


max
𝑆 (𝑡 )

𝑈 [𝑆(𝑡)] =
ˆ 𝑇

𝑡=0
��𝑒−𝜌𝑡𝑈 [𝑡, 𝑆(𝑡), ¤𝑆(𝑡)]d𝑡,

given 𝑆(0) = 0 = 𝑆(𝑇).

It is called a functional because 𝑈 is not a composite function of 𝑡 , but a function of the entire path 𝑆(𝑡); in other
words, 𝑈 is a function of 𝑆, not 𝑡. Also, note that the time and state of the start and end conditions are fixed, eliminating
variability. [7, ch1, pp.8-12] introduces several cases of variable endpoints: fixed time (vertical endpoint), fixed state
(horizontal endpoint), and fixed time-state relationship (curve or surface endpoint); variable start points are also briefly
mentioned.

Since 𝑆 is not a number but a function of time 𝑡, and 𝑈 is not a function of 𝑡, the optimization problem of 𝑈 (𝑆)
cannot be differentiated with respect to 𝑆 or 𝑡 to find the optimal path. Based on the idea of   calculus, a feasible idea is
to convert the objective function into a value-to-value problem instead of a function-to-value problem. In this way, the
continuous-time dynamic optimization problem can be solved directly using calculus methods. How to convert it?

Assuming that the optimal curve 𝑆◦ (𝑡) is known, and the adjacent perturbation path to the optimal curve is known to
be 𝜉 (𝑡), then any state path and its changes over time can be expressed as:

𝑆(𝑡) = 𝑆◦ (𝑡) + 𝑎𝜉 (𝑡),
¤𝑆(𝑡) = ¤𝑆◦ (𝑡) + 𝑎 ¤𝜉 (𝑡).

Therefore, the objective functional of𝑈 with respect to 𝑆 is transformed into the objective function of𝑈 with respect
to 𝑎:

max
𝑎
𝑈 (𝑎) =

ˆ 𝑇

𝑡=0
𝑢[𝑡,

𝑆 (𝑡 )︷          ︸︸          ︷
𝑆◦ (𝑡) + 𝑎𝜉 (𝑡),

¤𝑆 (𝑡 )︷          ︸︸          ︷
¤𝑆◦ (𝑡) + 𝑎 ¤𝜉 (𝑡)]d𝑡,

given 𝑆(0) = 0 = 𝑆(𝑇),
and 𝜉 (0) = 0 = 𝜉 (𝑇).

This has become a single variable unconstrained static optimization problem. The first-order necessary condition is
naturally (for simplicity, the lower limit of the integral is directly written as the starting point 0):

d𝑈
d𝑎

����
𝑎=0

=
d
d𝑎

{ˆ 𝑇

0
𝑢[𝑡, 𝑆◦ (𝑡) + 𝑎𝜉 (𝑡), ¤𝑆◦ (𝑡) + 𝑎 ¤𝜉 (𝑡)]d𝑡

}
= 0,

Leibniz rule
==========⇒ =

ˆ 𝑇

0

(
𝜕𝑢

𝜕𝑆

d𝑆
d𝑎
+ 𝜕𝑢
𝜕 ¤𝑆

d ¤𝑆
d𝑎

)
d𝑡 = 0,

=
ˆ 𝑇

0
𝑢𝑆𝜉 (𝑡)d𝑡 +

ˆ 𝑇

0
𝑢 ¤𝑆 ¤𝜉𝑡d𝑡︸       ︷︷       ︸ = 0,

=
ˆ 𝑇

0
𝑢𝑆𝜉 (𝑡)d𝑡 +

𝑎𝑏=𝑎′𝑏+𝑎𝑏′
integrate by part

=============⇒ 𝑎𝑏′=(𝑎𝑏) ′−𝑎′𝑏︷                                   ︸︸                                   ︷[
𝑢 ¤𝑆𝜉 (𝑡)

]𝑇
0︸      ︷︷      ︸

=0−0

−
ˆ 𝑇

0

(
d
d𝑡
𝑢 ¤𝑆

)
𝜉 (𝑡)d𝑡 = 0,

=
ˆ 𝑇

0
𝜉 (𝑡)

(
𝑢𝑆 −

d
d𝑡
𝑢 ¤𝑆

)
d𝑡 = 0,

=

Euler equation︷                               ︸︸                               ︷
𝑢𝑆 −

d
d𝑡
𝑢 ¤𝑆 [𝑡, 𝑆(𝑡), ¤𝑆(𝑡)]︸                  ︷︷                  ︸ = 0 or

Euler euqtion︷               ︸︸               ︷ˆ
𝑢𝑆d𝑡 − 𝑢 ¤𝑆 = 0,
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1.2 Dynamic Optimization Problem

= 𝑢𝑆 −

︷                              ︸︸                              ︷(
𝜕𝑢 ¤𝑆
𝜕𝑡
+
𝜕𝑢 ¤𝑆
𝜕𝑆

d𝑆
d𝑡
+
𝜕𝑢 ¤𝑆
𝜕 ¤𝑆

d ¤𝑆
d𝑡

)
,

= 𝑢𝑆 −
[
𝑢𝑡 ¤𝑆 + 𝑢𝑆 ¤𝑆 ¤𝑆(𝑡) + 𝑢 ¤𝑆 ¤𝑆 ¥𝑆(𝑡)

]
= 0,

= 𝑢 ¤𝑆 ¤𝑆 ¥𝑆(𝑡) + 𝑢𝑆 ¤𝑆 ¤𝑆(𝑡) + 𝑢𝑡 ¤𝑆 − 𝑢𝑆 = 0︸                                       ︷︷                                       ︸
(second-order nonlinear differentiation) Euler euqation

.

The original objective functional contains a discount factor, and the integrand should be 𝑒−𝜌𝑡𝑢, so the above Euler
equation can be further expressed as:

𝑒−𝜌𝑡𝑢 ¤𝑆 ¤𝑆 ¥𝑆(𝑡) + 𝑒−𝜌𝑡𝑢𝑆 ¤𝑆 ¤𝑆(𝑡) + (−𝜌)𝑒−𝜌𝑡𝑢𝑡 ¤𝑆 − 𝑒−𝜌𝑡𝑢𝑆 = 0.

The second-order condition does not change substantially due to the discount factor and can be simplified to:
d2𝑢

d𝑎2 =
d
d𝑎

(
d𝑢
d𝑎

)
,

=
d
d𝑎

ˆ 𝑇

0

[
𝑢𝑆𝜉 (𝑡) + 𝑢 ¤𝑆 ¤𝜉 (𝑡)

]
d𝑡,

Leibniz rule
==========⇒ =

ˆ 𝑇

0

(
d
d𝑎
𝑢𝑆

)
︸   ︷︷   ︸ 𝜉 (𝑡) +

(
d
d𝑎
𝑢 ¤𝑆

)
︸   ︷︷   ︸ ¤𝜉 (𝑡)d𝑡,

=
ˆ 𝑇

0



︷                  ︸︸                  ︷(
𝑢𝑆𝑆

d𝑢
d𝑎
+ 𝑢 ¤𝑆𝑆

d ¤𝑆
d𝑎

)
𝜉 (𝑡)

 +

︷         ︸︸         ︷(

d
d𝑎
𝑢 ¤𝑆

)
¤𝜉 (𝑡)




d𝑡,

=
ˆ 𝑇

0

{[
𝑢𝑆𝑆𝜉 (𝑡) + 𝑢 ¤𝑆𝑆 ¤𝜉 (𝑡)

]
𝜉 (𝑡) +

[
𝑢𝑆 ¤𝑆𝜉 (𝑡) + 𝑢 ¤𝑆 ¤𝑆 ¤𝜉 (𝑡)

] ¤𝜉 (𝑡)} d𝑡,

=
ˆ 𝑇

0

[
𝑢𝑆𝑆𝜉

2 (𝑡) + 2𝑢𝑆 ¤𝑆𝜉 (𝑡) ¤𝜉 (𝑡) + 𝑢 ¤𝑆 ¤𝑆 ¤𝜉2 (𝑡)
]

d𝑡,

=
ˆ 𝑇

0

[
𝜉 (𝑡) ¤𝜉 (𝑡)

] [
𝑢𝑆𝑆 𝑢𝑆 ¤𝑆
𝑢 ¤𝑆𝑆 𝑢 ¤𝑆 ¤𝑆

] [
𝜉 (𝑡)
¤𝜉 (𝑡)

]
d𝑡;

or
=
ˆ 𝑇

0

[
𝑢 ¤𝑆 ¤𝑆 ¤𝜉2 (𝑡) + 2𝑢 ¤𝑆𝑆 ¤𝜉 (𝑡)𝜉 (𝑡) + 𝑢𝑆𝑆𝜉2 (𝑡)

]
d𝑡,

=
ˆ 𝑇

0

[
¤𝜉 (𝑡) 𝜉 (𝑡)

] [
𝑢 ¤𝑆 ¤𝑆 𝑢 ¤𝑆𝑆
𝑢𝑆 ¤𝑆 𝑢𝑆𝑆

] [
¤𝜉 (𝑡)
𝜉 (𝑡)

]
d𝑡.

(2) Extension: Optimal Control

The variational method is to eliminate the choice variables of optimization problems without differential equation
form and transform it into an optimization problem with only state variables and their differential equations. The solution
idea is to transform the state path into a function of the optimal path and the adjacent perturbation path, and the dynamic
optimal problem in functional form is transformed into a static optimal problem similar to an ordinary function. The state
differential equation as part of the constraint condition will enter the objective function through variable substitution, and
the original choice variable (i.e. the control variable in the optimal control method) will be eliminated. Since it is converted
into a static optimization problem similar to that solved by calculus, it is naturally required that the differential equation of
state transfer is continuously differentiable.

The control variables that were eliminated in the calculus of variations (ie, the choice variables in static problems, a
type of choice variables in dynamic problems) become the protagonists. It is the the control variable that is in the objective
function, and the constraints are the state differential equations containing the control variables. Like static optimization
or discrete dynamic optimization problems, Lagrangian functions are constructed, and the first-order necessary conditions
from the perspective of Hamiltonian functions are derived (maximum principle). The control variables can be continuous
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or discontinuous; the state variables can only be continuous (allowing sharp inflection points).

Back to the original question:

max
𝐶 (𝑡 )

𝑈 =
ˆ 𝑇

0
𝑒−𝜌𝑡𝑢[𝐶 (𝑡)]d𝑡,

s.t. 𝐶 (𝑡) + ¤𝑆(𝑡) = 𝑟𝑆(𝑡) +𝑄(𝑡),
given 𝑆(0) = 0 = 𝑆(𝑇).


omit discounting for now
====================⇒


max
𝐶 (𝑡 )

𝑈 =
ˆ 𝑇

0
��𝑒−𝜌𝑡𝑢[𝐶 (𝑡)]d𝑡,

s.t. 𝐶 (𝑡) + ¤𝑆(𝑡) = 𝑟𝑆(𝑡) +𝑄(𝑡),
given 𝑆(0) = 0 = 𝑆(𝑇).

The Lagrangian is constructed just as in discrete time, the only difference being that instead of a summation operator
it is now an integration operator:

L(𝑡) ≡
ˆ 𝑇

0

𝑢[𝐶 (𝑡)] + 𝜆(𝑡)
[
𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡) − ¤𝑆(𝑡)

]︸                                                     ︷︷                                                     ︸
current-value Lagrangian

 d𝑡,

=
ˆ 𝑇

0


current-value Hamiltonian, abbreviated as H(𝑡 )︷                                           ︸︸                                           ︷
𝑢[𝐶 (𝑡)] + 𝜆(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)] −𝜆(𝑡) ¤𝑆(𝑡)

 d𝑡,

=
ˆ 𝑇

0

{
H[𝑡, 𝑆(𝑡), 𝐶 (𝑡), 𝜆(𝑡)] − 𝜆(𝑡) ¤𝑆(𝑡)

}
d𝑡,

𝜕L(𝑡)
𝜕𝜆(𝑡) = 0 ⇒ 𝜕H(𝑡)

𝜕𝜆(𝑡) −
¤𝑆(𝑡) = 0

=
ˆ 𝑇

0
H[𝑡, 𝑆(𝑡), 𝐶 (𝑡), 𝜆(𝑡)]d𝑡 −

ˆ 𝑇

0
𝜆(𝑡) ¤𝑆(𝑡)︸   ︷︷   ︸

integrate by part

d𝑡,

=
ˆ 𝑇

0
H[𝑡, 𝑆(𝑡), 𝐶 (𝑡), 𝜆(𝑡)]d𝑡 −



𝑎𝑏′=(𝑎𝑏) ′−𝑎′𝑏︷                                 ︸︸                                 ︷
[𝜆(𝑡)𝑆(𝑡)] |𝑇0 −

ˆ 𝑇

0
¤𝜆(𝑡)𝑆(𝑡)d𝑡


,

=
ˆ 𝑇

0
H[𝑡, 𝑆(𝑡), 𝐶 (𝑡), 𝜆(𝑡)] + ¤𝜆(𝑡)𝑆(𝑡)d𝑡 − [𝜆(𝑡)𝑆(𝑡)] |𝑇0 ,

=
ˆ 𝑇

0
H[𝑡, 𝑆(𝑡), 𝐶 (𝑡), 𝜆(𝑡)] + ¤𝜆(𝑡)𝑆(𝑡)d𝑡 − [𝜆(𝑇)𝑆(𝑇) − 𝜆(0)𝑆(0)],

=
ˆ 𝑇

0
H[𝑡, 𝑆(𝑡), 𝐶 (𝑡), 𝜆(𝑡)] + ¤𝜆(𝑡)𝑆(𝑡)d𝑡 − (0 − 0).

𝜕L(𝑡)
𝜕𝑆(𝑡) = 0 ⇒ 𝜕H(𝑡)

𝜕𝑆(𝑡) +
¤𝜆(𝑡) = 0

The Lagrange multiplier is also called the co-state variable of the Hamiltonian function. The first-order necessary
condition is:

𝜕L(𝑡)
𝜕𝐶 (𝑡) = 0,

𝜕L(𝑡)
𝜕𝑆(𝑡) = 0,

𝜕L(𝑡)
𝜕𝜆(𝑡) = 0.


⇒



𝜕H(𝑡)
𝜕𝐶 (𝑡) = 0,

𝜕H(𝑡)
𝜕𝑆(𝑡) = − ¤𝜆(𝑡),

𝜕H(𝑡)
𝜕𝜆(𝑡) = ¤𝑆(𝑡).

It can be seen that, with 𝐶 (𝑡) as the control variable, constructing the Hamiltonian only requires using it as the choice
variable:

max
𝐶 (𝑡 )
H(𝑡) ≡ 𝑢[𝐶 (𝑡)] + 𝜆(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)],
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1.2 Dynamic Optimization Problem

F.O.C. of control variable: 0 =
𝜕H(𝑡)
𝜕𝐶 (𝑡) ,

motion of co-state variable: ¤𝜆(𝑡) = −𝜕H(𝑡)
𝜕𝑆(𝑡) ,

motion of state variable: ¤𝑆(𝑡) = 𝜕H(𝑡)
𝜕𝜆(𝑡) .

The Lagrangian function considering the subjective discount factor is:

L(0) ≡
ˆ 𝑇

0

{
𝑒−𝜌𝑡𝑢[𝐶 (𝑡)] + 𝜆(𝑡)

[
𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡) − ¤𝑆(𝑡)

]}
d𝑡,

=
ˆ 𝑇

0

𝑒
−𝜌𝑡𝑢[𝐶 (𝑡)] + 𝜆(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)]︸                                                 ︷︷                                                 ︸

present-value Hamiltonian, abbrivates asH(0)

−𝜆(𝑡) ¤𝑆(𝑡)

 d𝑡.

The present-value Hamiltonian function including the subjective discount factor is:

H(0) ≡ 𝑒−𝜌𝑡𝑢[𝐶 (𝑡)] + 𝜆(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)],
⇒ 𝑒𝜌𝑡H(0)︸    ︷︷    ︸

current-value

= 𝑢[𝐶 (𝑡)] + 𝑒𝜌𝑡𝜆(𝑡)︸  ︷︷  ︸
current-value

[𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)],

⇒

current-value
Hamiltonian︷︸︸︷
H(𝑡) = 𝑢[𝐶 (𝑡)] +

current-value
Lagrange
multiplier︷︸︸︷
𝜂(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)] .

The relevant conditions for optimization are:

max
𝐶 (𝑡 )
H(0) ≡ 𝑒−𝜌𝑡𝑢[𝐶 (𝑡)] + 𝜆(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)],

F.O.C. of control variable: 0 =
𝜕H(0)
𝜕𝐶 (𝑡) ,

motion of co-state variable: ¤𝜆(𝑡) = − 𝜕H(0)
𝜕𝑆(𝑡) ,

motion of state variable: ¤𝑆(𝑡) = 𝜕H(0)
𝜕𝜆(𝑡) .



H(0)=𝑒−𝜌𝑡H(𝑡 )
================⇒
𝜆(𝑡 )=𝑒−𝜌𝑡 𝜂 (𝑡 )



max
𝐶 (𝑡 )
H(𝑡) ≡ 𝑢[𝐶 (𝑡)] + 𝜂(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)],

F.O.C. of control variable: 0 =
𝜕H(𝑡)
𝜕𝐶 (𝑡) ,

motion of co-state variable: ¤𝜂(𝑡) = 𝜌𝜂(𝑡) − 𝜕H(𝑡)
𝜕𝑆(𝑡) ,

motion of state variable: ¤𝑆(𝑡) = 𝜕H(𝑡)
𝜕𝜂(𝑡) .

The first set of equations above are equivalent, because the time 𝑡 is fixed when the extreme value is obtained, that is,
𝜕H(0)
𝜕𝐶 (𝑡) = 0,

⇒ 𝑒𝜌𝑡
𝜕H(0)
𝜕𝐶 (𝑡) = 0,

⇒ 𝜕 [𝑒𝜌𝑡H(0)]
𝜕𝐶 (𝑡) = 0,

⇒ 𝜕H(𝑡)
𝜕𝐶 (𝑡) = 0.

The second set of equations above are equivalent because:

𝜂(𝑡) = 𝑒𝜌𝑡𝜆(𝑡),

⇒ d𝜂(𝑡)
d𝑡

=
d[𝑒𝜌𝑡𝜆(𝑡)]

d𝑡
,

⇒ ¤𝜂(𝑡) = 𝜌𝑒𝜌𝑡𝜆(𝑡) + 𝑒𝜌𝑡 ¤𝜆(𝑡),

= 𝜌𝜂(𝑡) − 𝑒𝜌𝑡 𝜕H(0)
𝜕𝑆(𝑡) ,

= 𝜌𝜂(𝑡) − 𝜕 [𝑒
𝜌𝑡H(0)]
𝜕𝑆(𝑡) ,
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1.2 Dynamic Optimization Problem

⇒ ¤𝜂(𝑡) = 𝜌𝜂(𝑡) − 𝜕H(𝑡)
𝜕𝑆(𝑡) .

The third set of equations above are equivalent because:

¤𝑆(𝑡) = 𝜕H(0)
𝜕𝜆(𝑡) ,

=
𝜕 [𝑒𝜌𝑡H(0)]
𝜕 [𝑒𝜌𝑡𝜆(𝑡)] ,

⇒ ¤𝑆(𝑡) = 𝜕H(𝑡)
𝜕𝜂(𝑡) .

ii) From Bellman equation to Hamilton-Jacobi-Bellman equation

[Bellman1957] creatively proposed the idea of   dynamic programming for dynamic optimization problems in discrete
time and continuous time. To commemorate Richard Bell-man’s contribution in this area, the value function of the recursive
functional form he discovered was called the Bellman equation; the Bellman equation in continuous time is an extension
of the Hamilton-Jacobi equation in classical mechanics, so it is also called the Hamilton-Jacobi-Bellman (abbreviated as
HJB) equation. 11

From Example 13-1, we can see that the discrete-time Bellman equation is:

max
{𝐶𝑡 }𝑇𝑡=0

𝑈0 ≡
𝑇∑
𝑡=0

𝛽𝑡𝑢(𝐶𝑡 ),

s.t. 𝑆𝑡+1 − 𝑆𝑡 = 𝑟𝑆𝑡 +𝑄𝑡+1 − 𝐶𝑡+1,
given 𝑆(0) = 0 = 𝑆(𝑇);

↑ start from 1 ↓ start from 𝑡 + 1

max
{𝐶𝑡+ℎ+1 }𝑇ℎ=1

𝑈𝑡 ≡
𝑇∑
ℎ=1

𝛽ℎ𝑢(𝐶𝑡+ℎ+1),

s.t. 𝑆𝑡+ℎ+1 − 𝑆𝑡+ℎ = 𝑟𝑆𝑡+ℎ +𝑄𝑡+ℎ+1 − 𝐶𝑡+ℎ+1,
Bellman equation
==============⇒

lim
Δ→∞

𝛽 (Δ) = 0

lim
Δ→0

𝛽 (Δ) = 1

Δ = 1, 𝛽 (Δ) = 𝛽

𝑉 (𝑆𝑡 ) = max
𝐶𝑡

[Δ𝑢(𝐶𝑡 ) + 𝛽(Δ)𝑉 (𝑆𝑡+Δ)],

s.t. 𝑆𝑡+Δ − 𝑆𝑡 = 𝑟𝑆𝑡 + Δ𝑄𝑡 − Δ𝐶𝑡 ,
given 𝑆𝑡 = 0 = 𝑆𝑡+𝑇 .



vs.



max
{𝐶 (𝑡 ) }𝑇

𝑡=0

𝑈 (0) ≡
ˆ 𝑇

𝑡=0
𝑒−𝜌𝑡𝑢[𝐶 (𝑡)]d𝑡,

s.t. ¤𝑆(𝑡) = 𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡),
given 𝑆(0) = 0 = 𝑆(𝑇);

↑ start from 0 ↓ start from 𝑡

max
{𝐶 (ℎ) }𝑇

ℎ=𝑡

𝑈 (𝑡) ≡
ˆ 𝑇

ℎ=𝑡
𝑒−𝜌(ℎ−𝑡 )𝑢[𝐶 (ℎ)]dℎ,

s.t. ¤𝑆(ℎ) = 𝑟𝑆(ℎ) +𝑄(ℎ) − 𝐶 (ℎ),
HJB equation

======================⇒
𝛽 (Δ) = 𝑒−𝜌Δ

lim
Δ→0

𝑒−𝜌Δ = 1 − 𝜌Δ

lim
Δ→0

(𝑒𝜌Δ )−1 = (1 + 𝜌Δ)−1

𝑉 [𝑆(𝑡)] = ?

s.t. ¤𝑆(𝑡) = 𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡),
given 𝑆(𝑡) = 0 = 𝑆(𝑇).

In discrete time dynamic programming, the whole time chain appears to be divided into periods 𝑡 and 𝑡 + 1, but there
is no discrete period 𝑡 + 1 in continuous time, so it is represented by the time span Δ, and the next period is 𝑡 + Δ. In
discrete time, Δ = 1 is a special case. After sorting out the symbols, the value function of the continuous-time dynamic
optimaization can be written as:

11Previously, envelope theorems in static optimization and discrete-time dynamic optimization were introduced. Envelope theorems also exist
in continuous-time dynamic optimization. Assume that the state variable is 𝑥 (𝑡 ) , the control variable is 𝑦 (𝑡 ) , the state transition equation
is ¤𝑥 (𝑡 ) = 𝑔[𝑥 (𝑡 ) , 𝑦 (𝑡 ) , 𝑡 ], the objective function ismax

𝑦 (𝜏)

´ 𝑇
𝑡 𝐹 [𝑥 (𝜏 ) , 𝑦 (𝜏 ) , 𝜏 ]d𝜏, and the HJB equation is − 𝜕𝑉 (𝑥,𝑡 )

𝜕𝑡 = max
𝑦
{𝐹 (𝑥, 𝑦, 𝑡 ) +

𝜕𝑉 (𝑥,𝑡 )
𝜕𝑥 𝑔 (𝑥, 𝑦, 𝑡 ) }. given the optimal solution 𝑦◦𝑡 , the HJB equation becomes − 𝜕𝑉 (𝑥,𝑡 )

𝜕𝑡 = 𝐹 (𝑥, 𝑦◦, 𝑡 ) + 𝜕𝑉 (𝑥,𝑡 )
𝜕𝑥 𝑔 (𝑥, 𝑦◦, 𝑡 ) , and the enve-

lope theorem means that − 𝜕2𝑉 (𝑥,𝑡 )
𝜕𝑡𝜕𝑥 = 𝜕𝐹 (𝑥,𝑦◦ ,𝑡 )

𝜕𝑥 + 𝜕𝐹 (𝑥,𝑦◦ ,𝑡 )
𝜕𝑦◦

𝜕𝑦◦
𝜕𝑥 +

𝜕2𝑉 (𝑥,𝑡 )
𝜕𝑥2 𝑔 (𝑥, 𝑦◦, 𝑡 ) + 𝜕𝑉

𝜕𝑥

[
𝜕𝑔 (𝑥,𝑦◦ ,𝑡 )

𝜕𝑥 + 𝜕𝑔 (𝑥,𝑦◦ ,𝑡 )
𝜕𝑦◦

𝜕𝑦◦
𝜕𝑥

]
= 𝜕𝐹 (𝑥,𝑦◦ ,𝑡 )

𝜕𝑥 +[
𝜕𝐹 (𝑥, 𝑦◦, 𝑡 )

𝜕𝑦◦
+ 𝜕𝑉
𝜕𝑥

𝜕𝑔 (𝑥, 𝑦◦, 𝑡 )
𝜕𝑦◦

]
︸                                           ︷︷                                           ︸

F.O.C.=0

𝜕𝑦◦
𝜕𝑥 +

𝜕𝑉
𝜕𝑥

𝜕𝑔 (𝑥,𝑦◦ ,𝑡 )
𝜕𝑥 + 𝜕2𝑉 (𝑥,𝑡 )

𝜕𝑥2 𝑔 (𝑥, 𝑦◦, 𝑡 ) = 𝜕𝐹 (𝑥,𝑦◦ ,𝑡 )
𝜕𝑥 + 𝜕𝑉

𝜕𝑥
𝜕𝑔 (𝑥,𝑦◦ ,𝑡 )

𝜕𝑥 + 𝜕2𝑉 (𝑥,𝑡 )
𝜕𝑥2 𝑔 (𝑥, 𝑦◦, 𝑡 ) . This further

reveals the sensitivity of the optimal value function to the state, including two aspects: the direct effect (the change of state directly affects the current
income and future state) and the indirect effect (when the control variable is optimized, the marginal income has been equal to the marginal cost, so the
indirect effect generated by the adjustment of the optimal control variable is 0).
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1.2 Dynamic Optimization Problem

𝑉 (𝑡) ≡ max
{𝐶 (ℎ) }𝑇

ℎ=𝑡

ˆ 𝑇

ℎ=𝑡
𝑒−𝜌(ℎ−𝑡 )𝑢[𝐶 (ℎ)]dℎ, s.t. ¤𝑆(ℎ) = 𝑟𝑆(ℎ) +𝑄(ℎ) − 𝐶 (ℎ),

= max
{𝐶 (ℎ) }𝑇

ℎ=𝑡

{ˆ 𝑡+Δ

ℎ=𝑡
𝑒−𝜌(ℎ−𝑡 )𝑢[𝐶 (ℎ)]dℎ +

ˆ 𝑇

ℎ=𝑡+Δ
𝑒−𝜌(ℎ−𝑡−Δ)𝑢[𝐶 (ℎ)]dℎ

}
,

⇒ 𝑉 [𝑆(𝑡)] = max
𝐶 (𝑡 )

{
Δ𝑢[𝐶 (𝑡)] + 1

1 + 𝜌Δ𝑉 [𝑆(𝑡 + Δ)]
}
,

⇒ (1 + 𝜌Δ)𝑉 [𝑆(𝑡)] = max
𝐶 (𝑡 )
{(1 + 𝜌Δ)Δ𝑢[𝐶 (𝑡)] +𝑉 [𝑆(𝑡 + Δ)]} ,

⇒ 𝜌Δ𝑉 [𝑆(𝑡)] = max
𝐶 (𝑡 )
{(1 + 𝜌Δ)Δ𝑢[𝐶 (𝑡)] +𝑉 [𝑆(𝑡 + Δ)] −𝑉 [𝑆(𝑡)]} ,

⇒ 𝜌𝑉 [𝑆(𝑡)] = max
𝐶 (𝑡 )

{
(1 + 𝜌Δ)𝑢[𝐶 (𝑡)] + 𝑉 [𝑆(𝑡 + Δ)] −𝑉 [𝑆(𝑡)]

Δ

}
,

Δ→0
======⇒

lim
Δ→0
≡d𝑡

𝜌𝑉 [𝑆(𝑡)] = max
𝐶 (𝑡 )

{
𝑢[𝐶 (𝑡)] + d𝑉 [𝑆(𝑡)]

d𝑡

}
,

= max
𝐶 (𝑡 )

{
𝑢[𝐶 (𝑡)] + 𝑉 [𝑆(𝑡)]

d𝑆(𝑡)
d𝑆(𝑡)

d𝑡

}
,

= max
𝐶 (𝑡 )

{
𝑢[𝐶 (𝑡)] +𝑉 ′ [𝑆(𝑡)] ¤𝑆(𝑡)

}
,

⇒ 𝜌𝑉 [𝑆(𝑡)] = max
𝐶 (𝑡 )
{𝑢[𝐶 (𝑡)] +𝑉 ′ [𝑆(𝑡)] [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)]} .

[49, pp.142-] pointed out that the HJB equation can be derived from another perspective:

max
{𝐶 (ℎ) }𝑇

ℎ=𝑡

𝑉 (𝑡) ≡
ˆ 𝑇

ℎ=𝑡
𝑒−𝜌(ℎ−𝑡 )𝑢[𝐶 (ℎ)]dℎ,

⇒ ¤𝑉 (𝑡) = −𝑒−𝜌(𝑡−𝑡 )𝑢[𝐶 (𝑡)] +
ˆ 𝑇

ℎ=𝑡

d
d𝑡
𝑒−𝜌(ℎ−𝑡 )𝑢[𝐶 (ℎ)]dℎ,

⇒ ¤𝑉 (𝑡) = −𝑢[𝐶 (𝑡)] + 𝜌𝑢(𝑡),
⇒ 𝜌𝑢(𝑡) = 𝑢[𝐶 (𝑡)] + ¤𝑉 (𝑡),
⇒ 𝜌𝑉 [𝑆(𝑡)] = 𝑢[𝐶 (𝑡)] + ¤𝑉 [𝑆(𝑡)],
⇒ 𝜌𝑉 [𝑆(𝑡)] = 𝑢[𝐶 (𝑡)] +𝑉 ′ [𝑆(𝑡)]︸    ︷︷    ︸[𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)];
vs. H(𝑡) = 𝑢[𝐶 (𝑡)] +

︷︸︸︷
𝜂(𝑡) [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)] .

Moll (2012) compared the Hamiltonian of optimal control and the HJB equation of continuous dynamic programming,
and pointed out that 𝜂(𝑡) = 𝑉 ′ [𝑆(𝑡)] is the link between the two, that is, the covariate in the Hamiltonian are the shadow
prices in the HJB equation.

The first-order condition is:
𝑢′ [𝐶 (𝑡)]︸    ︷︷    ︸

marginal revenue

= 𝑉 ′ [𝑆(𝑡)]︸    ︷︷    ︸
marginal coat

= 𝜂(𝑡)︸︷︷︸
shadow price

.

Derivation of the state variable based on the HJB equation:
d

d𝑆(𝑡) {𝜌𝑉 [𝑆(𝑡)]} =
d

d𝑆(𝑡) {𝑉
′ [𝑆(𝑡)]}[𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)] +𝑉 ′ [𝑆(𝑡)] d

d𝑆(𝑡) {𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)},

⇒ 𝜌𝑉 ′ [𝑆(𝑡)] = 𝑉 ′′ [𝑆(𝑡)] [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)] + 𝑟𝑉 ′ [𝑆(𝑡)],
⇒ (𝜌 − 𝑟)𝑉 ′ [𝑆(𝑡)] = 𝑉 ′′ [𝑆(𝑡)] [𝑟𝑆(𝑡) +𝑄(𝑡) − 𝐶 (𝑡)],

=
d𝑉 ′ [𝑆(𝑡)]

d𝑡
≡ ¤𝑉 [𝑆(𝑡)],
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1.2 Dynamic Optimization Problem

⇒ 𝜌 − 𝑟 =
¤𝑉 [𝑆(𝑡)]
𝑉 ′ [𝑆(𝑡)] =

¤𝜂(𝑡)
𝜂(𝑡) .

This is the equation of motion for the marginal utility (shadow price) of savings, which is also the co-state variable:
(Hamilton multiplier).

The first-order condition is derived with respect to time 𝑡:
d𝑢′ [𝐶 (𝑡)]

d𝑡
=

d𝑉 ′ [𝑆(𝑡)]
d𝑡

,

= ¤𝑉 [𝑆(𝑡)],
= (𝜌 − 𝑟)𝑉 ′ [𝑆(𝑡)],
= (𝜌 − 𝑟)𝑢′ [𝐶 (𝑡)],

⇒
d𝑢′ [𝐶 (𝑡 ) ]

d𝑡
𝑢′ [𝐶 (𝑡)] = 𝜌 − 𝑟 =

¤𝜂(𝑡)
𝜂(𝑡) ,

⇒ 𝑢′′ [𝐶 (𝑡)] ¤𝐶 (𝑡)
𝑢′ [𝐶 (𝑡)] = 𝜌 − 𝑟,

⇒

intertemporal
elasticity of substitution︷              ︸︸              ︷
−𝐶 (𝑡)𝑢

′′ [𝐶 (𝑡)]
𝑢′ [𝐶 (𝑡)]︸              ︷︷              ︸

1/𝜎

¤𝐶 (𝑡)
𝐶 (𝑡) = 𝑟 − 𝜌,

⇒ 1
𝜎

¤𝐶 (𝑡)
𝐶 (𝑡) = 𝑟 − 𝜌,

⇒
¤𝐶 (𝑡)
𝐶 (𝑡) = 𝜎(𝑟 − 𝜌).

This is the famous Keynes-Ramsey rule, or the intertemporal Euler equation for consumption or the Euler equation for
the consumption growth rate. 𝜎 is the intertemporal elasticity of substitution that appeared in Example 10. This parameter
will be introduced in more detail in Chapter 3.

ii. Multiple Control Variables 12

State variables and control variables may form constraints on the time axis, or different control variables may also
form constraints in time and space. Back to the original question, add control variables and make them constrain each
other:

max
𝐶 (𝑡 )

𝑈0 =
ˆ 𝑇

0
𝑒−𝜌𝑡𝑢 [𝐶 (𝑡 ) ]d𝑡,

s.t. 𝐶 (𝑡 ) + ¤𝑆 (𝑡 ) = 𝑟 (𝑡 )𝑆 (𝑡 ) +𝑄 (𝑡 ) ,

given 𝑆 (0) = 0 = 𝑆 (𝑇 ) .


from one control variable
==========================⇒

to two control variable


max

𝐶 (𝑡 ) ,𝐿 (𝑡 )
𝑈0 =

ˆ 𝑇

0
𝑒−𝜌𝑡𝑢 [𝐶 (𝑡 ) , 𝐿 (𝑡 ) ]d𝑡,

s.t. 𝐶 (𝑡 ) + ¤𝑆 (𝑡 ) = 𝑟 (𝑡 )𝑆 (𝑡 ) +𝑤 (𝑡 )𝐿 (𝑡 ) ,

given 𝑆 (0) = 0 = 𝑆 (𝑇 ) .


from real varaibles

=====================⇒
to nominal variables


max

𝐶 (𝑡 ) ,𝐿 (𝑡 )
𝑈0 =

ˆ 𝑇

0
𝑒−𝜌𝑡𝑢 [𝐶 (𝑡 ) , 𝐿 (𝑡 ) ]d𝑡,

s.t. 𝑃 (𝑡 )𝐶 (𝑡 ) + ¤𝐵(𝑡 ) = 𝑖 (𝑡 )𝐵(𝑡 ) +𝑊 (𝑡 )𝐿 (𝑡 ) ,

given 𝐵(0) = 0 = 𝐵(𝑇 ) .

The increase from a single control variable to two control variables is labor supply 𝐿 (𝑡) (real wages are 𝑤(𝑡)), and
the increase from real variables to nominal variables is the aggregate price level 𝑃(𝑡) and the aggregate wage level 𝑊 (𝑡).
Savings can be expressed as real variables or nominal variables, and are often converted into bonds 𝐵(𝑡).

The Hamiltonian and optimality conditions are:

max
𝐶 (𝑡 ) ,𝐿 (𝑡 ) ,𝐵(𝑡 ) ,𝜂 (𝑡 )

H(𝑡) ≡ 𝑢[𝐶 (𝑡), 𝐿 (𝑡)] + 𝜂(𝑡) [𝑖(𝑡)𝐵(𝑡) +𝑊 (𝑡)𝐿 (𝑡) − 𝑃(𝑡)𝐶 (𝑡)],

F.O.C. of control variable: 0 =
𝜕H(𝑡)
𝜕𝐶 (𝑡) ⇒ 𝑈𝐶𝑡 = 𝜂(𝑡)𝑃(𝑡),

F.O.C. of control variable: 0 =
𝜕H(𝑡)
𝜕𝐿 (𝑡) ⇒ 𝑈𝐿𝑡 = 𝜂(𝑡)𝑊 (𝑡),

motion of co-state variable: ¤𝜂(𝑡) = 𝜌𝜂(𝑡) − 𝜕H(𝑡)
𝜕𝐵(𝑡) ⇒ ¤𝜂(𝑡) = 𝜌𝜂(𝑡) − 𝜂(𝑡)𝑖(𝑡),

motion of state variable: ¤𝐵(𝑡) = 𝜕H(𝑡)
𝜕𝜂(𝑡) ⇒ ¤𝐵(𝑡) = 𝑖(𝑡)𝐵(𝑡) +𝑊 (𝑡)𝐿 (𝑡) − 𝑃(𝑡)𝐶 (𝑡).

12[7, pp.276-277] and Moll (2016) presented such dynamic optimal problems.
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1.2 Dynamic Optimization Problem

Define the current-value utility function as in Example 10:

𝑢[𝐶 (𝑡), 𝐿 (𝑡)] = log𝐶 (𝑡) − 𝐿 (𝑡)
1+ 1

𝜑

1 + 1
𝜑

.

From this we can obtain the intertemporal consumption Euler equation and labor supply equation:

1
𝐶 (𝑡) = 𝜂(𝑡)𝑃(𝑡)

𝐿 (𝑡)
1
𝜑 = 𝜂(𝑡)𝑊 (𝑡)


Π (𝑡 )= ¤𝑃 (𝑡 )𝑃 (𝑡 )
=========⇒


¤𝐶 (𝑡)
𝐶 (𝑡) = 𝑟 (𝑡) − 𝜌,

𝐶 (𝑡)𝐿 (𝑡)
1
𝜑 =

𝑊 (𝑡)
𝑃(𝑡) .

The second equation on the left is divided by the first equation on the left to obtain the second equation on the
right; the first equation on the right can be obtained by first taking the logarithm of the first equation on the left, that is,
− log𝐶 (𝑡) = log 𝜂(𝑡) + log 𝑃(𝑡), calculating its derivative with respect to time − ¤𝐶 (𝑡 )𝐶 (𝑡 ) =

¤𝜂 (𝑡 )
𝜂 (𝑡 ) +

¤𝑃 (𝑡 )
𝑃 (𝑡 ) and then combining it

with the motion equation of the co-state variable ¤𝜂 (𝑡 )
𝜂 (𝑡 ) = 𝜌 − 𝑖(𝑡), and defining the real interest rate as 𝑟 (𝑡) ≡ 𝑖(𝑡) − Π(𝑡).

Dynamic optimal problem with special equality constraints between control variables (subjective discounting is not
considered for simplicity):

max←−−→
min

𝑈 =
ˆ 𝑇

0
𝑢(𝑡, 𝐵, 𝐶, 𝐿)d𝑡,

s.t. ¤𝐵 = 𝑓 (𝑡, 𝐵, 𝐶, 𝐿),
𝑧 = 𝑔(𝑡, 𝐵, 𝐶, 𝐿),

𝐵(0) = 0 = 𝐵(𝑇).

Where 𝑡 is the time variable, 𝐵 is the state variable,𝐶 and 𝐿 are control variables, 𝑓 and 𝑔 are two function expressions,
and 𝑧 is a constant.

If there is no equality constraint between the two control variables, it is the most basic optimal control problem. Let’s
put it aside and construct the Hamiltonian:

max
𝐵(𝑡 ) ,𝐶 (𝑡 ) ,𝐿 (𝑡 ) ,𝜂 (𝑡 )

H(𝑡) ≡ 𝑢(𝑡, 𝐵, 𝐶, 𝐿) + 𝜂(𝑡) 𝑓 (𝑡, 𝐵, 𝐶, 𝐿).

The initial problem becomes optimizing the Hamiltonian given the equality constraints:

max
𝐵(𝑡 ) ,𝐶 (𝑡 ) ,𝐿 (𝑡 ) ,𝜂 (𝑡 )

H(𝑡) ≡ 𝑢(𝑡, 𝐵, 𝐶, 𝐿) + 𝜂(𝑡) 𝑓 (𝑡, 𝐵, 𝐶, 𝐿),

s.t. 𝑧 = 𝑔(𝑡, 𝐵, 𝐶, 𝐿).

Then construct the Lagrangian function to find the optimal solution:

max
𝐵(𝑡 ) ,𝐶 (𝑡 ) ,𝐿 (𝑡 ) ,𝜂 (𝑡 )

L(𝑡) ≡ H (𝑡) + 𝜆(𝑡) [𝑧 − 𝑔(𝑡, 𝐵, 𝐶, 𝐿)],

= [𝑢(𝑡, 𝐵, 𝐶, 𝐿) + 𝜂(𝑡) 𝑓 (𝑡, 𝐵, 𝐶, 𝐿)] + 𝜆(𝑡) [𝑧 − 𝑔(𝑡, 𝐵, 𝐶, 𝐿)] .

⇒



F.O.C. of Lagrangian



𝜕L(𝑡)
𝜕𝐶 (𝑡) = 0 =

𝜕𝑢(·)
𝜕𝐶 (𝑡) + 𝜂(𝑡)

𝜕 𝑓 (·)
𝜕𝐶 (𝑡) − 𝜆(𝑡)

𝜕𝑔(·)
𝜕𝐶 (𝑡) ,

𝜕L(𝑡)
𝜕𝐿 (𝑡) = 0 =

𝜕𝑢(·)
𝜕𝐿 (𝑡) + 𝜂(𝑡)

𝜕 𝑓 (·)
𝜕𝐿 (𝑡) − 𝜆(𝑡)

𝜕𝑔(·)
𝜕𝐿 (𝑡) ,

𝜕L(𝑡)
𝜕𝜆(𝑡) = 0 = 𝑧 − 𝑔(𝑡, 𝐵, 𝐶, 𝐿).

maximum principle of Hamiltonian


¤𝜂(𝑡) = −𝜕L(𝑡)

𝜕𝐵(𝑡) = 𝜆(𝑡)
𝜕𝑔(·)
𝜕𝐵(𝑡) −

𝜕H(𝑡)
𝜕𝐵(𝑡) ,

¤𝐵(𝑡) = 𝜕L(𝑡)
𝜕𝜂(𝑡) =

𝜕H(𝑡)
𝜕𝜂(𝑡) .

If there is an inequality constraint, it is similar to a static optimization problem, which is broadened to the Kuhn-Tucker
condition based on the first-order condition of the equality constraint.

II. Multiple state variables
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1.2 Dynamic Optimization Problem

Equality or inequality constraints in dynamic problems may otherwise exist in integral form, but the integral con-
straints can be replaced by new state variables, which in turn increase the number of state variables (ignoring multiple
control variables and their constraints and subjective discounting):

max←−−→
min

𝑈 =
ˆ 𝑇

0
𝑢(𝑡, 𝐵, 𝐶,S𝐿)d𝑡,

s.t. ¤𝐵(𝑡) = 𝑓 (𝑡, 𝐵, 𝐶,S𝐿),
𝑧 =hhhhhh𝑔(𝑡, 𝐵, 𝐶, 𝐿),

𝑧 =
ˆ 𝑇

0
𝑔(𝑡, 𝐵, 𝐶,S𝐿)d𝑡,

𝐵(0) = 0 = 𝐵(𝑇).



define the integral constraint
as a new state variableΓ (𝑡 )

=======================⇒
Γ (𝑡 ) ≡ −

ˆ 𝑡

0
𝑔 (𝑡, 𝐵, 𝐶)d𝑡

Γ (0) = −
ˆ 0

0
𝑔 (𝑡, 𝐵, 𝐶)d𝑡 = 0

Γ (𝑇 ) = −
ˆ 𝑇

0
𝑔 (𝑡, 𝐵, 𝐶)d𝑡 = −𝑧



max←−−→
min

𝑈 =
ˆ 𝑇

0
𝑢(𝑡, 𝐵, 𝐶)d𝑡,

s.t. ¤𝐵(𝑡) = 𝑓 (𝑡, 𝐵, 𝐶),

¤Γ(𝑡) = −𝑔(𝑡, 𝐵, 𝐶),
Γ(0) = 0, Γ(𝑇) = −𝑧,
𝐵(0) = 0, 𝐵(𝑇) = 0.

Now it is transformed into an unconstrained dynamic optimal problem with two state variables. The Hamiltonian
function and optimality conditions are:

max
𝐶 (𝑡 ) ,𝐵(𝑡 ) ,Γ (𝑡 ) ,𝜂 (𝑡 ) ,𝜇 (𝑡 )

H(𝑡) ≡ 𝑢[𝐶 (𝑡)] + 𝜂(𝑡) 𝑓 (𝑡, 𝐵, 𝐶) − 𝜇(𝑡)𝑔(𝑡, 𝐵, 𝐶),

F.O.C. of control variable: 0 =
𝜕H(𝑡)
𝜕𝐶 (𝑡) ,

motion of co-state variable: ¤𝜂(𝑡) = −𝜕H(𝑡)
𝜕𝐵(𝑡) ,

motion of co-state variable: ¤𝜇(𝑡) = −𝜕H(𝑡)
𝜕Γ(𝑡) ,

motion of state variable: ¤𝐵(𝑡) = 𝜕H(𝑡)
𝜕𝜂(𝑡) ,

motion of state variable: ¤Γ(𝑡) = 𝜕H(𝑡)
𝜕𝜇(𝑡) .

Just to explain, since ¤𝜇(𝑡) = − 𝜕H(𝑡 )𝜕Γ (𝑡 ) = 0, it can be seen that 𝜇(𝑡) is a constant 𝜇.

If subjective discounting is retained, the present-value Hamiltonian is constructed; if the integral equality constraint
is relaxed to an integral inequality constraint, the optimal condition is more complicated, and the reader is left to further
explore it when he has the energy; the solution to the unconstrained dynamic optimal solution between more than two state
variables is the same and will not be repeated here.

1.2.2.2 Equality constraints between state variables

Before introducing the optimal problem of equality constraints between state variables in continuous time, let’s re-
view Example 12-1, the two-period consumption decision problem of an endowment economy. If, in addition to con-
sumption, the real money balance also enters the utility function (real savings become nominal savings, so the real interest
rate𝑟becomes the nominal interest rate 𝑖):

max
𝐶1 ,𝐶2 ,𝑀1/𝑃1 ,𝑀2/𝑃2

𝑈 = 𝑢

(
𝐶1,

𝑀1
𝑃1

)
+ 𝛽𝑢

(
𝐶2,

𝑀2
𝑃2

)
,

s.t.

expenditure and
money balance
in this period︷               ︸︸               ︷

𝑃1𝐶1 + 𝑀1 + 𝑆1 ≤

income in this period︷                                ︸︸                                ︷
[𝑖 + (1 − A𝛿)]@@𝑆0 +ZZ𝑀0 + 𝑃1𝑄1 ,

𝑃2𝐶2 + 𝑀2 +@@𝑆2︸               ︷︷               ︸
expenditure and
money balance

in the next period

≤ [𝑖 + (1 − A𝛿)]𝑆1 + 𝑀1 + 𝑃2𝑄2︸                                ︷︷                                ︸
income in next period

︸                                                           ︷︷                                                           ︸
per-period (dynamic) budget constraint

.



𝑀0=𝑆0=0=𝑆2
=================⇒
𝐶1 ,𝐶2 ,𝑀1 ,𝑀2>0

lifetime expenditure & money balance︷                                        ︸︸                                        ︷
𝑃1𝐶1 +

𝑃2
1 + 𝑖 𝐶2 +

𝑖

1 + 𝑖 𝑀1 +
𝑀2

1 + 𝑖 =

lifetime income︷               ︸︸               ︷
𝑃1𝑄1 +

𝑃2
1 + 𝑖 𝑄2︸                                                                   ︷︷                                                                   ︸

lifetime (intertemporal) budget constraint

.
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1.2 Dynamic Optimization Problem

Still assume that saving in the last period is meaningless, so the terminal condition is 𝑆2 = 0, but the money balance
𝑀2 in the last period has the same utility increasing at a decreasing rate like consumption, so it does not have to be 0.
Combine the two budget constraints:

𝑀1 + 𝑆1 = 𝑃1𝑄1 − 𝑃1𝐶1,

𝐴1≡𝑀1+𝑆1
==========⇒ 𝐴1 = 𝑃1𝑄1 − 𝑃1𝐶1.

𝑃2𝐶2 + 𝑀2 = (1 + 𝑖)

𝑆1︷          ︸︸          ︷
( 𝐴1︸︷︷︸−𝑀1) +𝑀1 + 𝑃2𝑄2,

⇒ 𝑃2𝐶2 + 𝑀2 = (1 + 𝑖) [
︷             ︸︸             ︷
(𝑃1𝑄1 − 𝑃1𝐶1) −𝑀1] + 𝑀1 + 𝑃2𝑄2,

⇒ 𝑃2𝐶2 + 𝑀2 = (1 + 𝑖)(𝑃1𝑄1 − 𝑃1𝐶1) − (1 + 𝑖)𝑀1 + 𝑀1 + 𝑃2𝑄2,

⇒ 𝑃2𝐶2 + 𝑀2 = (1 + 𝑖)𝑃1 (𝑄1 − 𝐶1) − 𝑖𝑀1 + 𝑃2𝑄2,

⇒ (1 + 𝑖)𝑃1𝐶1 + 𝑃2𝐶2 + 𝑖𝑀1 + 𝑀2 = (1 + 𝑖)𝑃1𝑄1 + 𝑃2𝑄2,

⇒ 𝑃1𝐶1 +
𝑃2

1 + 𝑖 𝐶2 +
𝑖

1 + 𝑖 𝑀1 +
𝑀2

1 + 𝑖 = 𝑃1𝑄1 +
𝑃2

1 + 𝑖𝑄2,

⇒ 𝐶1 +
𝑃2/𝑃1

1 + 𝑖 𝐶2 +
𝑖

1 + 𝑖
𝑀1

𝑃1
+ 1

1 + 𝑖
𝑀2

𝑃1
= 𝑄1 +

𝑃2/𝑃1

1 + 𝑖 𝑄2,

⇒ 𝐶1 +
𝑃2/𝑃1

1 + 𝑖 𝐶2 +
𝑖

1 + 𝑖
𝑀1

𝑃1
+ 𝑃2/𝑃1

1 + 𝑖
𝑀2

𝑃2
= 𝑄1 +

𝑃2/𝑃1

1 + 𝑖 𝑄2.

This is how the lifetime budget constraint is obtained. Construct the Lagrangian function:

maxL ≡
[
𝑢

(
𝐶1,

𝑀1

𝑃1

)
+ 𝛽𝑢

(
𝐶2,

𝑀2

𝑃2

)]
+ 𝜆

[(
𝑄1 +

𝑃2/𝑃1

1 + 𝑖 𝑄2

)
−

(
𝐶1 +

𝑃2/𝑃1

1 + 𝑖 𝐶2 +
𝑖

1 + 𝑖
𝑀1

𝑃1
+ 𝑃2/𝑃1

1 + 𝑖
𝑀2

𝑃2

)]
.

The first-order necessary conditions are:
𝜕L
𝜕𝐶1

= 𝑢𝐶1 − 𝜆 = 0,

𝜕L
𝜕𝐶2

= 𝛽𝑢𝐶2 − 𝜆
𝑃2/𝑃1

1 + 𝑖 = 0,

𝜕L
𝜕 𝑀1
𝑃1

= 𝑢𝑀1/𝑃1 − 𝜆
𝑖

1 + 𝑖 = 0.

The first and the second first-order conditions above are combined into the intertemporal consumption Euler equation,
and the first and the third first-order conditions are combined into the demand equation for the real money balance in the
first period:

𝛽𝑢𝐶2

𝑢𝐶1
=
𝑃2/𝑃1

1 + 𝑖 ,
𝑢𝑀1/𝑃1

𝑢𝐶1
=

𝑖

1 + 𝑖 ,

Given the current-value utility function, after logarithmic linearization, we can obtain the linearized dynamic IS curve
(the core of which is the inverse relationship between output and real interest rate) and the money demand curve (the key is
to give the positive relationship between real money balance and output and the inverse relationship with nominal interest
rate), which will be described in detail in [55].

It should be noted that the state variables in the first period are only 𝑆0 and 𝑀0. For the sake of simplicity, they are
all assumed to be 0. In other words, the equality constraint 𝑆0 + 𝑀0 = 0 between the state variables in the first period
greatly simplifies the calculation, which leaves only the exogenous state variable (current endowment income 𝑄1) in the
first period; the equality constraint between the endogenous state variables in the second period is 𝑆1 +𝑀1 = 𝐴1 , and there
is also an exogenous state variable (current endowment income 𝑄2).

The appearance of the above two endogenous state variables does not bring additional trouble to the solution. Through
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1.2 Dynamic Optimization Problem

variable substitution, it is also the dynamic optimal problem of a single endogenous state variable. However, the inequality
constraint of a single endogenous state variable will make the solution more complicated, which has been explained in [7,
pp.298-313] and [20, pp.230-239], so this book will not repeat it.
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